OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 2047–2051

Electromagnetically induced transparency and optical switching in a rubidium cascade system

Jason Clarke, Hongxin Chen, and William A. van Wijngaarden  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 2047-2051 (2001)
http://dx.doi.org/10.1364/AO.40.002047


View Full Text Article

Acrobat PDF (119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electromagnetically induced transparency is observed in a mismatched-wavelength cascade system with a room-temperature rubidium vapor cell. A cw probe laser beam monitors the 5S1/2 → 5P3/2 transition while another cw laser couples the 5P3/2 state to a higher excited state. The ratio of the observed Rabi frequencies for coupling to the 5P3/2 → 8D3/2, 5/2 transitions agrees well with that predicted by use of the transition oscillator strengths. Optical switching is demonstrated with an 80-mW coupling laser beam modulated up to 1 MHz.

© 2001 Optical Society of America

OCIS Codes
(020.4900) Atomic and molecular physics : Oscillator strengths
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4080) Fiber optics and optical communications : Modulation
(270.1670) Quantum optics : Coherent optical effects
(300.6210) Spectroscopy : Spectroscopy, atomic

Citation
Jason Clarke, Hongxin Chen, and William A. van Wijngaarden, "Electromagnetically induced transparency and optical switching in a rubidium cascade system," Appl. Opt. 40, 2047-2051 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-2047


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
  2. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
  3. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997), Chap. 7.
  4. O. Kacharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
  5. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
  6. P. Mandel, “Lasing without inversion: a useful concept?” Contemp. Phys. 34, 235–246 (1993).
  7. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
  8. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
  9. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
  10. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
  11. J. Gea-Banacloche, Y. Li, and S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
  12. Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
  13. Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
  14. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
  15. S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
  16. J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
  17. J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
  18. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
  19. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
  20. S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
  21. A. V. Durrant, H. X. Chen, S. A. Hopkins, and J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
  22. H. X. Chen, A. V. Durrant, J. P. Marangos, and J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
  23. T. van der Veldt, J. F. Roch, P. Grelu, and P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
  24. F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, and M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
  25. C. Fort, F. S. Cataliotti, M. Prevedelli, and M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
  26. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
  27. C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, and M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
  28. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
  29. S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
  30. B. S. Ham, S. M. Shahriar and P. R. Hemmer, “Electromagnetically induced transparency over spectral hole-burning temperature in a rare-earth-doped solid,” J. Opt. Soc. Am. B 16, 801–804 (1999).
  31. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
  32. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
  33. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
  34. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
  35. Log10[Rb] = −4560/T + 30.98 − 2.45 Log10 T where T is in kelvins and [Rb], is in cm-3. See C. J. Smithells, Metals Reference Book (Butterworth, London, UK, 1962).
  36. D. R. Bates and A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
  37. W. A. van Wijngaarden, “Scalar and tensor polarizabilities of low lying S, D, F and G states in rubidium,” J. Quant. Spectrosc. Radiat. Trans. 57, 275–279 (1997).
  38. C. E. Tanner, B. P. Masterson, and C. E. Wieman, “Atomic beam collimation using a laser diode with a self-locking power-buildup cavity,” Opt. Lett. 13, 357–359 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited