OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 13 — May. 1, 2001
  • pp: 2117–2125

Vibration-induced phase errors in high-speed phase-shifting speckle-pattern interferometry

Pablo D. Ruiz, Jonathan M. Huntley, Yuji Shen, C. Russell Coggrave, and Guillermo H. Kaufmann  »View Author Affiliations


Applied Optics, Vol. 40, Issue 13, pp. 2117-2125 (2001)
http://dx.doi.org/10.1364/AO.40.002117


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results from numerical simulations of a dynamic phase-shifting speckle interferometer used in the presence of mechanical vibrations. The simulation is based on a detailed mathematical model of the system, which is used to predict the expected frequency response of the rms measurement error, in the time-varying phase difference maps, as a result of vibration. The performance of different phase-shifting algorithms is studied over a range of vibrational frequencies. Phase-difference evaluation is performed by means of temporal phase shifting and temporal phase unwrapping. It is demonstrated that longer sampling windows and higher framing rates are preferred in order to reduce the phase-change error that is due to vibration. A numerical criterion for an upper limit on the length of time window for the phase-shifting algorithm is also proposed. The numerical results are finally compared with experimental data, acquired with a phase-shifting speckle interferometer of 1000 frames/s.

© 2001 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

History
Original Manuscript: August 9, 2000
Published: May 1, 2001

Citation
Pablo D. Ruiz, Jonathan M. Huntley, Yuji Shen, C. Russell Coggrave, and Guillermo H. Kaufmann, "Vibration-induced phase errors in high-speed phase-shifting speckle-pattern interferometry," Appl. Opt. 40, 2117-2125 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-13-2117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, D. W. Robinson, G. T. Reid, eds., Interferogram Analysis (Institute of Physics, Bristol, UK, 1993).
  2. I. Yamaguchi, J. Y. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996). [CrossRef]
  3. X. C. de Lega, “Processing of non-stationary interference patterns: adapted phase-shifting algorithms and wavelet analysis. Application to dynamic deformation measurements by holographic and speckle interferometry,” Ph.D. dissertation (l’Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997).
  4. J. M. Huntley, G. H. Kaufmann, D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999). [CrossRef]
  5. P. Haible, M. P. Kothiyal, H. J. Tiziani, “Heterodyne temporal speckle-pattern interferometry,” Appl. Opt. 39, 114–117 (2000). [CrossRef]
  6. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068–1070 (2000). [CrossRef]
  7. P. de Groot, “Vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 12, 354–365 (1995). [CrossRef]
  8. P. de Groot, L. L. Deck, “Numerical simulations of vibration in phase-shifting interferometry,” Appl. Opt. 35, 2172–2178 (1996). [CrossRef] [PubMed]
  9. J. M. Huntley, H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  10. P. de Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723–4730 (1995). [CrossRef]
  11. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  12. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry—some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef]
  13. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  14. J. M. Huntley, “Suppression of phase errors from vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 15, 2233–2241 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited