OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 13 — May. 1, 2001
  • pp: 2132–2137

Beam shaping with diffuse light by use of a single reflection

Nandor Bokor and Nir Davidson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 13, pp. 2132-2137 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique for diffuse beam shaping is presented. The beam shaping is achieved by a single reflection on an element, which consists of many displaced parallel planar reflecting facets. The reflecting facets approximate a designed curved surface. We demonstrate the validity of the method for the conversion of a diffuse Gaussian beam into a uniform one in one of the spatial dimensions.

© 2001 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3300) Lasers and laser optics : Laser beam shaping

Original Manuscript: July 18, 2000
Revised Manuscript: January 16, 2001
Published: May 1, 2001

Nandor Bokor and Nir Davidson, "Beam shaping with diffuse light by use of a single reflection," Appl. Opt. 40, 2132-2137 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Eismann, A. M. Tai, J. N. Cederquist, “Iterative design of a holographic beamformer,” Appl. Opt. 28, 2641–2650 (1989). [CrossRef] [PubMed]
  2. T. Dresel, M. Beyerlein, J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996). [CrossRef] [PubMed]
  3. N. Davidson, A. A. Friesem, E. Hasman, “Holographic axilens–high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef] [PubMed]
  4. E. Hasman, S. Keren, N. Davidson, A. A. Friesem, “Three-dimensional optical metrology with color-coded extended depth of focus,” Opt. Lett. 24, 439–441 (1999). [CrossRef]
  5. L. A. Romero, F. M. Dickey, “Lossless laser beam shaping,” J. Opt. Soc. Am. A 13, 751–760 (1996). [CrossRef]
  6. Y. Chen, D. Li, Y. Sheng, “Beam-shaping element with reduced sensitivity to input variations,” Appl. Opt. 36, 568–571 (1997). [CrossRef] [PubMed]
  7. N. Davidson, A. A. Friesem, E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett. 61, 381–383 (1992). [CrossRef]
  8. S. Sinzinger, K.-H. Brenner, J. Moisel, T. Spick, M. Testorf, “Astigmatic gradient-index elements for laser-diode collimation and beam shaping,” Appl. Opt. 34, 6626–6632 (1995). [CrossRef] [PubMed]
  9. R. Ozeri, L. Khaykovich, N. Davidson, “Long scattering times in a novel blue-detuned dipole trap,” Phys. Rev. A 59, R1750–R1753 (1999). [CrossRef]
  10. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
  11. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  12. J. Turunen, A. Vasara, J. Westerholm, “Kinoform phase relief synthesis: a stochastic method,” Opt. Eng. 28, 1162–1167 (1989).
  13. M. Duparré, M. A. Golub, B. Lüdge, V. S. Pavelyev, V. A. Soifer, G. V. Uspleniev, S. G. Volotovskii, “Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,” Appl. Opt. 34, 2489–2497 (1995). [CrossRef]
  14. J. Bengtsson, “Kinoform-only Gaussian-to-rectangle beam shaper for a semiconductor laser,” Appl. Opt. 35, 3807–3814 (1996). [CrossRef] [PubMed]
  15. H. Aagedal, M. Schmid, S. Egner, J. Müller-Quade, T. Beth, F. Wyrowski, “Analytical beam shaping with application to laser-diode arrays,” J. Opt. Soc. Am. A 14, 1549–1553 (1997). [CrossRef]
  16. J. W. Ogland, “Mirror system for uniform beam transformation in high-power annular lasers,” Appl. Opt. 17, 2917–2923 (1978). [CrossRef] [PubMed]
  17. N. Davidson, A. A. Friesem, E. Hasman, “Reflective and refractive systems for general two-dimensional beam transformations,” Appl. Opt. 33, 815–820 (1994). [CrossRef] [PubMed]
  18. M. A. Karim, A. K. Cherri, A. A. Sami Awwal, A. Basit, “Refracting system for annular laser beam transformation,” Appl. Opt. 26, 2446–2449 (1987). [CrossRef] [PubMed]
  19. S. K. Case, P. R. Haugen, O. J. Løkberg, “Multifacet holographic optical elements for wave front transformations,” Appl. Opt. 20, 2670–2675 (1981). [CrossRef] [PubMed]
  20. N. Davidson, A. A. Friesem, E. Hasman, I. Shariv, “Curved holographic elements for optical coordinate transformations,” Opt. Lett. 16, 1430–1432 (1991). [CrossRef] [PubMed]
  21. The propagation distance D actually depends on X, and hence the spread of the different facets is nonuniform. However, for large enough D it is nearly uniform.
  22. N. Davidson, A. A. Friesem, E. Hasman, “Optical coordinate transformations,” Appl. Opt. 31, 1067–1073 (1992). [CrossRef] [PubMed]
  23. N. Davidson, A. A. Friesem, E. Hasman, “On the limits of optical interconnects,” Appl. Opt. 31, 5426–5430 (1992). [CrossRef] [PubMed]
  24. N. Davidson, A. A. Friesem, “Role of rank in matrix representation of optical interconnects,” J. Opt. Soc. Am. A 10, 1725–1728 (1993). [CrossRef]
  25. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited