OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 13 — May. 1, 2001
  • pp: 2206–2215

Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration

Ranadhir Roy and Eva M. Sevick-Muraca  »View Author Affiliations

Applied Optics, Vol. 40, Issue 13, pp. 2206-2215 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (2446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of near-infrared (NIR) optical imaging for biomedical optical imaging is hampered by the computational intensiveness of large-scale three-dimensional (3-D) image reconstruction and the potential lack of endogenous contrast for detection of relevant tissue features. In this contribution the inverse optical imaging problem is formulated in three dimensions in a noncompressive geometry as a simple-bound constrained minimization problem in order to recover the interior fluorescence properties of exogenous contrast agent from frequency-domain photon migration measurements at the boundary. The solution of the forward optical diffusion problem for the frustum shape containing fluorescence inclusions of 10:1 contrast is accomplished by use of the Galerkin finite-element formulation. The inverse approach employs the truncated Newton method with trust region and a modification of automatic reverse differentiation to speed the computation of the optimization problem. The image-reconstruction results confirm that the constrained minimization may offer a more logical approach for the 3-D optical imaging problem than unconstrained optimization.

© 2001 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography

Original Manuscript: August 7, 2000
Revised Manuscript: January 2, 2001
Published: May 1, 2001

Ranadhir Roy and Eva M. Sevick-Muraca, "Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration," Appl. Opt. 40, 2206-2215 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. O. McBride, B. Pogue, E. D. Gerety, S. G. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999). [CrossRef]
  2. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999). [CrossRef]
  3. D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000). [CrossRef]
  4. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997). [CrossRef]
  5. E. M. Sevick-Muraca, D. Y. Paithankar, “Fluorescence imaging system and measurement,” U.S. patent5,865,754 (2February1999).
  6. R. Barbour, H. L. Graber, “Diagnostic imaging with light, and beyond,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2.
  7. X. Li, B. Chance, A. G. Yodh, “Fluorescence heterogeneities in turbid media, limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6843 (1998). [CrossRef]
  8. N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999). [CrossRef]
  9. D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999). [CrossRef]
  10. A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999). [CrossRef]
  11. K. Licha, A. Becker, “New contrast agents for optical imaging: acid cleavable conjugates of cyanine dyes with Biomolecules,” in Biomedical Imaging, Reporters, Dyes and Instrumentation, D. J. Bornhop, C. H. Contag, E. M. Sevick-Muraca, eds., Proc. SPIE3600, 29–35 (1999). [CrossRef]
  12. X. D. Zhu, S. P. Wei, X. W. Guo, “Imaging objects in tissue-like media with optical tagging and the diffuse photon differential transmittance,” J. Opt. Soc. Am. A 14, 300–305 (1997). [CrossRef]
  13. V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999). [CrossRef]
  14. J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997). [CrossRef] [PubMed]
  15. D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).
  16. K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997). [CrossRef]
  17. N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999). [CrossRef] [PubMed]
  18. C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999). [CrossRef] [PubMed]
  19. R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999). [CrossRef]
  20. E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998). [CrossRef]
  21. S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000). [CrossRef] [PubMed]
  22. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000). [CrossRef] [PubMed]
  23. E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994). [CrossRef] [PubMed]
  24. R. Roy, E. M. Sevick-Muraca, “Active constrained truncated Newton method for optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000). [CrossRef]
  25. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from tissues and other random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef] [PubMed]
  26. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  27. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  28. Gambit, Fidap 8 user’s manual (Fluent, Inc., 500 Davies Street, Suite 600, Evanston, Ill. 60201, 1998).
  29. O. C. Zienkiewez, R. L. Taylor, The Finite Element Methods in Engineering Science (McGraw-Hill, New York, 1989).
  30. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. I. Theory and Formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org . [CrossRef]
  31. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. II. Reconstructions from synthetic measurements,” Opt. Express 4, 372–382 (1999), http://www.opticsexpress.org . [CrossRef]
  32. J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001). [CrossRef]
  33. M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995). [CrossRef] [PubMed]
  34. D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited