OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 14 — May. 10, 2001
  • pp: 2247–2252

Multichannel wavelength division multiplexing with photonic crystals

Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather  »View Author Affiliations

Applied Optics, Vol. 40, Issue 14, pp. 2247-2252 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multichannel wavelength-division-multiplexing system consisting of a two-dimensional photonic crystal is proposed. The system consists of two parts, a waveguiding element, realized by defects in a photonic crystal, and frequency-selective elements, realized by photonic crystal microcavities. Simulations, performed with a two-dimensional finite-difference time-domain technique with a perfectly matched layer absorbing boundary condition, showed the ability to filter an incident pulse into six spectral channels with a FWHM of 2 nm.

© 2001 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.1750) Integrated optics : Components
(200.4740) Optics in computing : Optical processing
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(290.4210) Scattering : Multiple scattering
(350.4600) Other areas of optics : Optical engineering

Original Manuscript: August 24, 2000
Revised Manuscript: January 26, 2001
Published: May 10, 2001

Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. C. Dragone, “Efficient n × n star couplers using Fourier optics,” J. Lightwave Technol. 7, 479–489 (1989). [CrossRef]
  4. H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994). [CrossRef]
  5. K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999). [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  9. R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  10. H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef] [PubMed]
  11. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  12. K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990). [CrossRef]
  13. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1998).
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  15. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1995).
  16. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  17. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, Boston, Mass., 2000).
  18. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996). [CrossRef]
  19. T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998). [CrossRef]
  20. G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996). [CrossRef]
  21. E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  22. R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991). [CrossRef]
  23. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited