OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2345–2355

Characterization and Control of a Multielement Dual-Frequency Liquid-Crystal Device for High-Speed Adaptive Optical Wave-Front Correction

David Dayton, Stephen Browne, John Gonglewski, and Sergio Restaino  »View Author Affiliations


Applied Optics, Vol. 40, Issue 15, pp. 2345-2355 (2001)
http://dx.doi.org/10.1364/AO.40.002345


View Full Text Article

Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic.

© 2001 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3720) Optical devices : Liquid-crystal devices

Citation
David Dayton, Stephen Browne, John Gonglewski, and Sergio Restaino, "Characterization and Control of a Multielement Dual-Frequency Liquid-Crystal Device for High-Speed Adaptive Optical Wave-Front Correction," Appl. Opt. 40, 2345-2355 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-15-2345


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. A. Vasil’ev, I. N. Kompanets, and A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
  2. S. T. Kowel, P. Kornreich, and A. Nouhi, “Adaptive spherical lens,” Appl. Opt. 23, 2774–2777 (1984).
  3. A. A. Vasil’ev, A. F. Naumov, and V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
  4. V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).
  5. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
  6. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
  7. M. A. Vorontsov, G. W. Carhart, D. Pruidze, J. C. Ricklin, and D. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
  8. D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, and V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE 1543, 133–143 (1991).
  9. A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
  10. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
  11. D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, and S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
  12. S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
  13. G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
  14. A. F. Naumov and V. N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” Rep. SPC97–4015 (Russian Academy of Sciences, P. N. Lebedev Physical Institute, Samara, Russia, 1997).
  15. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
  16. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25(1), 12–15 (1974).
  17. I. C. Khoo and S. T. Wu, Optics and Non-Linear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  18. G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
  19. F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
  20. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
  21. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited