OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2398–2416

Radiative transfer model for the computation of radiance and polarization in an ocean–atmosphere system: polarization properties of suspended matter for remote sensing

Malik Chami, Richard Santer, and Eric Dilligeard  »View Author Affiliations


Applied Optics, Vol. 40, Issue 15, pp. 2398-2416 (2001)
http://dx.doi.org/10.1364/AO.40.002398


View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radiative transfer code termed OSOA for the ocean–atmosphere system that is able to predict the total and the polarized signals has been developed. The successive-orders-of-scattering method is used. The air–water interface is modeled as a planar mirror. Four components grouped by their optical properties, pure seawater, phytoplankton, nonchlorophyllose matter, and yellow substances, are included in the water column. Models are validated through comparisons with standard models. The numerical accuracy of the method is better than 2%; high computational efficiency is maintained. The model is used to study the influence of polarization on the detection of suspended matter. Polarizing properties of hydrosols are discussed: phytoplankton cells exhibit weak polarization and small inorganic particles, which are strong backscatterers, contribute appreciably to the polarized signal. Therefore the use of the polarized signal to extract the sediment signature promises good results. Also, polarized radiance could improve characterization of aerosols when open ocean waters are treated.

© 2001 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(260.5430) Physical optics : Polarization
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: July 25, 2000
Revised Manuscript: February 5, 2001
Published: May 20, 2001

Citation
Malik Chami, Richard Santer, and Eric Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean–atmosphere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-15-2398


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  2. G. N. Plass, G. W. Kattawar, “Color of the ocean,” Appl. Opt. 17, 1432–1446 (1978). [CrossRef] [PubMed]
  3. H. R. Gordon, O. B. Brown, “Irradiance reflectivity of a flat ocean as a function of the optical properties,” Appl. Opt. 12, 1549–1551 (1973). [CrossRef] [PubMed]
  4. M. Viollier, “Contribution à l’étude du rayonnement rétrodiffusé par l’océan. Application à la télédétection de la chlorophylle,” Ph.D. dissertation (Université des Sciences et Techniques de Lille, Lille, France, 1976).
  5. H. Gordon, “A bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean,” Appl. Opt. 26, 4133–4148 (1987). [CrossRef] [PubMed]
  6. C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  7. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  8. C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces,” Limnol. Oceanogr. 34, 1473–1483 (1989). [CrossRef]
  9. G. N. Plass, G. W. Kattawar, “Radiative transfer in an atmosphere–ocean system,” Appl. Opt. 8, 455–466 (1969). [CrossRef] [PubMed]
  10. E. Raschke, “Multiple scattering calculation of the transfer of solar radiation in an atmosphere–ocean system,” Contrib. Atmos. Phys. 45, 1–19 (1972).
  11. G. N. Plass, G. W. Kattawar, “Monte Carlo calculations of radiative transfer in the Earth’s atmosphere–ocean system. I. Flux in the atmosphere and the ocean,” J. Phys. Oceanogr. 2, 139–145 (1972). [CrossRef]
  12. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media such as the atmosphere–ocean system,” Appl. Opt. 33, 431–443 (1994). [CrossRef] [PubMed]
  13. H. R. Gordon, T. Zhang, “How well can radiance reflected from the ocean–atmosphere system be predicted from measurements at the sea surface?,” Appl. Opt. 35, 6527–6543 (1996). [CrossRef] [PubMed]
  14. J. L. Deuzé, M. Herman, R. Santer, “Fourier series expansion of the transfer equation in the atmosphere–ocean system,” J. Quant. Spectrosc. Radiat. Transfer 41, 483–494 (1989). [CrossRef]
  15. C. D. Mobley, Light and Water (Academic, San Diego, Calif., 1994).
  16. J. L. Deuzé, “Etude de la polarisation du rayonnement par les milieux diffusants. Application à la polarisation localisée de Venus,” Ph.D. dissertation (Université des Sciences et Techniques de Lille, Lille, France, 1974).
  17. E. Dilligeard, “Télédétection des eaux du cas II. Caractérisation des sédiments marins,” Ph.D. dissertation (Université du Littoral Côte d’Opale, Wimereux, France, 1997).
  18. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  19. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10,749–10,768 (1988). [CrossRef]
  20. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
  21. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970). [CrossRef]
  22. C. H. Whitlock, L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris, E. A. Gurganus, “Comparison of reflectance with backscatter and absorption parameters for turbid waters,” Appl. Opt. 20, 517–522 (1981). [CrossRef] [PubMed]
  23. Y. H. Ahn, “Propriétés optiques de particules biologiques et minérales présentes dans l’océan. Application: inversion de la réflectance,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1990).
  24. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov, N. E. Steemann eds. (Academic, San Diego, Calif., 1974).
  25. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  26. J. Potter, “The delta function approximation in radiative transfer theory,” J. Atmos. Sci. 27, 943–949 (1970). [CrossRef]
  27. J. Lenoble, ed., Standard Procedures To Compute Atmospheric Radiative Transfer in a Scattering Atmosphere (International Association of Meteorology and Atmospheric Physics Radiation Commission, 1974), Vols. I and II.
  28. T. J. Petzold, “Volume scattering functions for selected natural waters,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 150–174.
  29. J. Lenoble, Atmospheric radiative transfer (Deepak, Hampton, Va., 1993).
  30. G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean system with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989). [CrossRef]
  31. K. J. Voss, E. S. Fry, “Measurements of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef] [PubMed]
  32. T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954). [CrossRef] [PubMed]
  33. P. Y. Deschamps, M. Herman, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 3598–3615 (1994).
  34. B. Fougnie, “Contribution à l’observation de la couleur de l’océan à partir du capteur spatial POLDER,” Ph.D. dissertation (Université des Sciences et Techniques de Lille, Lille, France, 1998).
  35. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  36. R. Santer, “Contribution à l’étude de la polarisation du rayonnement solaire diffusé par Vénus,” Ph.D. dissertation (Université des Sciences et Techniques de Lille, Lille, France, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited