OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2443–2452

Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame

Peter O. Witze, Simone Hochgreb, David Kayes, Hope A. Michelsen, and Christopher R. Shaddix  »View Author Affiliations


Applied Optics, Vol. 40, Issue 15, pp. 2443-2452 (2001)
http://dx.doi.org/10.1364/AO.40.002443


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced incandescence (LII) and laser elastic-scattering measurements have been obtained with subnanosecond time resolution from a propane diffusion flame. Results show that the peak and time-integrated values of the LII signal increase with increasing laser fluence to maxima at the time of the onset of significant vaporization, beyond which they both decrease rapidly with further increases in fluence. This latter behavior for the time-integrated value is known to be characteristic for a laser beam with a rectangular spatial profile and is attributed to soot mass loss from vaporization. However, there is no apparent explanation for the corresponding large decrease in the peak value. Analysis shows that the peak value occurs at the time in the laser pulse when the time-integrated fluence reaches approximately 0.2 J/cm2 and that the magnitude of the peak value is strongly dependent on the rate of energy deposition. One possible explanation for this behavior is that, at high laser fluences, a cascade ionization phenomenon leads to the formation of an absorptive plasma that strongly perturbs the LII process.

© 2001 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(290.5850) Scattering : Scattering, particles
(350.4990) Other areas of optics : Particles

History
Original Manuscript: October 4, 2000
Revised Manuscript: February 5, 2001
Published: May 20, 2001

Citation
Peter O. Witze, Simone Hochgreb, David Kayes, Hope A. Michelsen, and Christopher R. Shaddix, "Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame," Appl. Opt. 40, 2443-2452 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-15-2443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  2. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  3. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  4. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  5. Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  6. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  7. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999). [CrossRef]
  8. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  9. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996). [CrossRef]
  10. I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997). [CrossRef]
  11. Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997). [CrossRef]
  12. R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999). [CrossRef]
  13. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  14. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993). [CrossRef]
  15. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  16. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997). [CrossRef] [PubMed]
  17. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977). [CrossRef]
  18. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969), pp. 158–191.
  19. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000). [CrossRef]
  20. T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991). [CrossRef]
  21. T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997). [CrossRef]
  22. A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996). [CrossRef] [PubMed]
  23. H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000). [CrossRef]
  24. B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990). [CrossRef]
  25. D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).
  26. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in paper AIAA-99-0640 presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).
  27. S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166. [CrossRef]
  28. T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989). [CrossRef]
  29. B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993). [CrossRef]
  30. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  31. R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991). [CrossRef] [PubMed]
  32. T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996). [CrossRef] [PubMed]
  33. Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996). [CrossRef]
  34. Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995). [CrossRef]
  35. J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997). [CrossRef]
  36. A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993). [CrossRef]
  37. D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,” J. Appl. Phys. 48, 2217–2225 (1977). [CrossRef]
  38. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited