OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2461–2467

Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry

Andrew M. Scott, Gary Cook, and Andrew P. G. Davies  »View Author Affiliations

Applied Optics, Vol. 40, Issue 15, pp. 2461-2467 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We characterize a self-imaging multipass amplifier scheme that provides both high extraction efficiency and overall gain. A diode-pumped slab amplifier with a single-pass small-signal gain of 2.5 is used in a 16-pass mode to amplify an input pulse from 50 µJ to 50 mJ, extracting approximately 22% of the stored energy. A stimulated Brillouin-scattering phase-conjugate mirror provides isolation from amplified spontaneous emission, prevents gain depletion, and also ensures good beam quality. The system can be operated from 10 Hz to in excess of 450 Hz, with modest changes in the beam quality and energy. The scheme has the potential to be scaled to higher-energy and higher-power systems.

© 2001 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3530) Lasers and laser optics : Lasers, neodymium
(190.5040) Nonlinear optics : Phase conjugation

Original Manuscript: June 23, 2000
Revised Manuscript: January 16, 2001
Published: May 20, 2001

Andrew M. Scott, Gary Cook, and Andrew P. G. Davies, "Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry," Appl. Opt. 40, 2461-2467 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.
  2. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991). [PubMed]
  3. C. Le Blanc, G. Grillon, J. P. Chambaret, A. Migus, A. Antonetti, “Compact and efficient multipass Ti:sapphire system for femtosecond chirped pulse amplification at the terawatt level,” Opt. Lett. 18, 140–142 (1993). [CrossRef]
  4. R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).
  5. O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).
  6. D. A. Rockwell, “A review of phase conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988). [CrossRef]
  7. B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).
  8. N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992). [CrossRef]
  9. W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).
  10. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995). [CrossRef]
  11. A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).
  12. L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963). [CrossRef]
  13. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1976). [CrossRef]
  14. Onyx Optics Inc., 6551 Sierra Lane, Dublin, Calif.
  15. C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.
  16. J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).
  17. A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited