OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 15 — May. 20, 2001
  • pp: 2515–2521

Rapid Optical Method for Logging Dust Concentration Versus Depth in Glacial Ice

Predrag Miocinovic, P. Buford Price, and Ryan C. Bay  »View Author Affiliations


Applied Optics, Vol. 40, Issue 15, pp. 2515-2521 (2001)
http://dx.doi.org/10.1364/AO.40.002515


View Full Text Article

Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the design and simulated response of a dust logger consisting of a downward-pointing phototube, ~2 m below side-directed light-emitting diodes (LEDs), attached to a cable that can lower the device down a 3-in. (7.5-cm) borehole filled with butyl acetate. LED photons that enter the ice are scattered or absorbed by dust grains, and those that reach the phototube provide a measure of dust or volcanic ash concentration at a given depth. An increased dust concentration associated with an ancient colder climate will usually result in an increase in collected light, but may decrease collected light if air bubbles are present. Centimeter-thick volcanic ash bands can also be detected. The concept is based on six years of experience with pulsed light sources used to measure optical properties of deep Antarctic ice.

© 2001 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(230.0040) Optical devices : Detectors
(280.1100) Remote sensing and sensors : Aerosol detection
(290.5850) Scattering : Scattering, particles

Citation
Predrag Miocinovic, P. Buford Price, and Ryan C. Bay, "Rapid Optical Method for Logging Dust Concentration Versus Depth in Glacial Ice," Appl. Opt. 40, 2515-2521 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-15-2515


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. For example, see WET Labs transmissometer at http://www.wetlabs.com/Products/index.html.
  2. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, E. Dalberg, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, I. Liubarsky, D. Lowder, T. Miller, P. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Ch. Spiering, O. Streicher, Q. Sun, Th. Thon, S. Tilav, R. Wischnewski, C. Walck, and G. Yodh, “UV and optical light transmission properties in deep ice at the South Pole,” Geophys. Res. Lett. 24, 1355–1358 (1997).
  3. The AMANDA Collaboration, “Optical properties of deep ice at the South Pole: absorption,” Appl. Opt. 36, 4168–4180 (1997).
  4. P. B. Price and L. Bergström, “Optical properties of deep ice at the South Pole: scattering,” Appl. Opt. 36, 4181–4194 (1997).
  5. Y. D. He and P. B. Price, “Remote sensing of dust in deep ice at the South Pole,” J. Geophys. Res. 103 (D14) 17041–17056 (1998).
  6. E. Mosley-Thompson and L. G. Thompson, “Nine centuries of microparticle deposition at the South Pole,” Quat. Res. 17, 1–13 (1982).
  7. The AMANDA Collaboration, “The AMANDA neutrino telescope: principle of operation and first results,” Astropart. Phys. 13, 1–20 (2000).
  8. The AMANDA Collaboration, “Observation of high energy neutrinos with Cherenkov detectors embedded in deep Antarctic ice,” Nature (London) 410, 441–443 (2001).
  9. P. B. Price, K. Woschnagg, and D. Chirkin, “Age vs depth of glacial ice at South Pole,” Geophys. Res. Lett. 27, 2129–2132 (2000).
  10. J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature (London) 399, 429–436 (1999).
  11. W. S. Broecker and J. van Donk, “Insolation changes, ice volumes, and the 18O record in deep-sea cores,” J. Geophys. Res. [Space Phys.] 8, 169–198 (1970).
  12. J. Hays, J. Imbrie, and N. Shackleton, “Variations in the Earth’s orbit: pacemaker of the ice ages,” Science 194, 1121–1132 (1976).
  13. R. A. Muller and G. J. MacDonald, “Glacial cycles and astronomical forcing,” Science 277, 215–218 (1997).
  14. R. A. Muller and G. J. MacDonald, “Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity,” Proc. Natl. Acad. Sci. USA 94, 8329–8334 (1997).
  15. A. J. Gow and T. Williamson, “Volcanic ash in the Antarctic ice sheet and its possible climatic implications,” Earth Planet. Sci. Lett. 13, 210–218 (1971).
  16. E. Mosley-Thompson and L. G. Thompson, “Nine centuries of microparticle deposition at the South Pole,” Quat. Res. 17, 1–13 (1982).
  17. G. A. Zielinski, “Use of paleo-records in determining variability within the volcanism-climate system,” Quat. Sci. Rev. 19, 417–438 (2000).
  18. B. Koci, K. Cuffey, and G. Clow, “Project summary: a fast mechanical-access drill for polar glaciology, paleoclimatology, and the Earth Sciences,” proposal submitted 17 May 2000 to the National Science Foundation Office of Polar Programs, http://area51.berkeley.edu/deepice2000/access.
  19. K. Woschnagg, for the AMANDA Collaboration, “Optical properties of South Pole ice at depths from 140 to 2300 meters,” in the Proceedings of the Twenty-Sixth International Cosmic Ray Conference, B. L. Dingus, D. B. Kieda, and M. H. Salamon, eds. (American Institute of Physics, College Park, Md., 1999), pp. 200–203.
  20. G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  21. J. R. Petit, L. Mounier, J. Jouzel, Y. S. Korotkevich, V. I. Kotlyakov, and C. Lorius, “Palaeoclimatological and chronological implications of the Vostok core dust record,” Nature (London) 343, 56–58 (1990).
  22. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, A. Coulthard, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, P. O. Hulth, J. Jacobsen, S. Johansson, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. C. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Q. Sun, S. Tilav, C. Walck, and G. Yodh, “Optical properties of the South Pole ice at depths between 0.8 and 1 kilometer,” Science 267, 1147–1150 (1995).
  23. N. I. Barkov and V. Ya. Lipenkov, “Kolichestvennaya kharakteristika struktury l’da do glubiny 1400 m v rayone stantsii Vostok v Antarktide” [Numerical characteristics of ice structure down to a depth of 1400 m in the region of Vostok station], Mater. Glyatsiol. Issled. 51, 178–186 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited