OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 16 — Jun. 1, 2001
  • pp: 2601–2610

Two-color thermal detector with thermal chopping for infrared focal-plane arrays

Vladimir N. Leonov and Donald P. Butler  »View Author Affiliations


Applied Optics, Vol. 40, Issue 16, pp. 2601-2610 (2001)
http://dx.doi.org/10.1364/AO.40.002601


View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micromachined thermal infrared (IR) detectors are emerging into the marketplace to provide high-performance thermal (IR) imagery at low cost. Thermal detectors can be improved when a tunable wavelength response is provided and when a thermal chopper is incorporated into the detector by use of microelectromechanical (MEM) elements. Most thermal detectors require a chopper, continuous synchronous chopping in the case of pyroelectric detectors, or asynchronous chopping in the case of staring microbolometers. Mechanical choppers are bulky and costly. We present the fundamental principles of micromachined thermal detectors that possess tunable wavelength or color response and a technique for thermal chopping. A micromirror, switching between two spatial positions under the detector, provides a response to two wavelength windows by tuning the optical resonant cavity. The image can then be integrated at the readout level to achieve a multicolor IR picture. A thermal MEM chopper can be used instead of a mechanical chopper to maintain the same video frame rate and to allow for an interlaced resetting of staring thermal arrays. Unlike the second generation of uncooled IR arrays, the actual temperature of objects can be obtained by a comparison of the response in two wavelength windows, in addition to the direct measurement of IR power that they radiate in the entire 8–14-µm spectral region.

© 2001 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(110.3080) Imaging systems : Infrared imaging
(110.6820) Imaging systems : Thermal imaging

History
Original Manuscript: August 16, 2000
Revised Manuscript: February 22, 2001
Published: June 1, 2001

Citation
Vladimir N. Leonov and Donald P. Butler, "Two-color thermal detector with thermal chopping for infrared focal-plane arrays," Appl. Opt. 40, 2601-2610 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-16-2601


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Radford, R. Wyles, J. Wyles, J. Varesi, M. Ray, D. Murphy, A. Kennedy, A. Finch, E. Moody, F. Cheung, R. Coda, S. Baur, “Microbolometer uncooled infrared camera with 20 mK NETD,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 636–646 (1998). [CrossRef]
  2. C. M. Hanson, H. R. Beratan, J. F. Belcher, K. R. Udayakumar, K. L. Soch, “Advances in monolithic ferroelectric uncooled IRFPA technology,” in Infrared Detectors and Focal Plane Arrays V, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE3379, 60–68 (1998). [CrossRef]
  3. A. M. Waxman, A. N. Gove, M. C. Seibert, D. A. Fay, J. E. Carrick, J. P. Racamato, E. D. Savoye, B. E. Burke, R. K. Reich, W. H. McGonagle, D. M. Craig, “Progress on color night vision: visible/IR fusion, reception and search, and low-light CCD imaging,” in Enhanced and Synthetic Vision 1996, J. G. Verly, ed., Proc. SPIE2736, 96–107 (1996). [CrossRef]
  4. V. N. Leonov, “Capabilities of antenna-coupled superconducting microbolometers,” J. Phys. IV 8, 267–270 (1998).
  5. R. A. Smith, F. E. Jones, B. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, Oxford, 1957).
  6. R. A. Wood, “Monolithic silicon microbolometer arrays,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 43–121. [CrossRef]
  7. N. B. Stevens, “Radiation thermopiles,” in Semiconductors and Semimetals: Infrared Detectors, R. Willardson, A. Beer, eds. (Academic, New York, 1970), Vol. 5, pp. 287–318. [CrossRef]
  8. N. Teranishi, “Thermoelectric uncooled infrared focal plane,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 203–218. [CrossRef]
  9. C. M. Hanson, “Hybrid pyroelectric-ferroelectric bolometer arrays,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 123–174. [CrossRef]
  10. E. H. Putley, “The pyroelectric detector,” in Semiconductors and Semimetals: Infrared Detectors, R. Willardson, A. Beer, eds. (Academic, New York, 1970), Vol. 5, pp. 259–285. [CrossRef]
  11. T. W. Kenny, “Tunneling infrared sensors,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 227–267. [CrossRef]
  12. J. R. Vig, R. L. Filler, Y. Kim, “Application of quartz microresonators to uncooled infrared imaging arrays,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 269–296. [CrossRef]
  13. B. Beyer, R. Cannata, A. Stout, A. Gin, P. Taylor, E. Woodbury, J. Deffner, F. Ennerson, “Amber’s uncooled microbolometer LWIR camera,” in Infrared Detectors and Focal Plane Arrays IV, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2746, 13–22 (1996). [CrossRef]
  14. X. Gu, G. Karunasiri, J. Yu, G. Chen, U. Sridhar, W. J. Zeng, “On-chip compensation of self-heating effects in microbolometer infrared detector arrays,” Sens. Actuators A 69, 92–96 (1998). [CrossRef]
  15. R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys. 49, 1335–1386 (1986). [CrossRef]
  16. T. Breen, N. Butler, M. Kohin, C. Marshall, R. Murphy, T. Parker, R. Silva, “More applications of uncooled microbolometer sensors,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 530–540 (1998). [CrossRef]
  17. C. Hanson, H. Beratan, R. Owen, M. Corbin, S. McKenney, “Uncooled thermal imaging at Texas Instruments,” in Infrared Detectors: State of the Art, W. H. Makky, ed., Proc. SPIE1735, 17–26 (1992).
  18. J. F. Belcher, C. M. Hanson, H. R. Beratan, K. R. Udayakumar, K. L. Soch, “Uncooled monolithic ferroelectric IRFPA technology,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 611–622 (1998). [CrossRef]
  19. R. Watton, P. Manning, “Ferroelectrics in uncooled thermal imaging,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 541–554 (1998). [CrossRef]
  20. V. N. Leonov, D. P. Butler, Z. Çelik-Butler, K. R. Udayakumar, C. M. Hanson, H. R. Beratan, “Dielectric loss and related noise of pyroelectric modified lead titanate arrays,” Solid-State Electron. (in press).
  21. D. Butler, Z. Çelik-Butler, A. Jahanzeb, J. E. Gray, C. M. Travers, “Micromachined YBaCuO capacitor structures as uncooled pyroelectric infrared detectors,” J. Appl. Phys. 84, 1680–1687 (1998). [CrossRef]
  22. O. G. Vendik, S. P. Zubko, L. T. Ter-Martirosayn, “Experimental evidence of the size effect in thin ferroelectric films,” Appl. Phys. Lett. 73, 37–39 (1998). [CrossRef]
  23. A. Seifert, P. Muralt, N. Setter, “High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications,” Appl. Phys. Lett. 72, 2409–2411 (1998). [CrossRef]
  24. D. L. Polla, J. R. Choi, “Monolithic pyroelectric bolometer arrays,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 175–201. [CrossRef]
  25. R. Bruchhaus, D. Pitzer, R. Primig, W.-R. Wersing, Y. Xu, “Deposition of self-polarized PZT films by planar multi-target sputtering,” Integr. Ferroelectr. 14, 141–149 (1997). [CrossRef]
  26. P. W. Kruse, “Principles of uncooled infrared focal plane arrays,” in Semiconductors and Semimetals: Uncooled Infrared Imaging Arrays and Systems, P. Kruse, D. Skatrud, eds. (Academic, San Diego, Calif., 1997), Vol. 47, pp. 17–42. [CrossRef]
  27. S. Ramo, J. H. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1967).
  28. K. C. Liddiard, U. Ringh, C. Jansson, O. Reinhold, “Progress of Swedish-Australian research collaboration on uncooled smart IR sensors,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 578–584 (1998). [CrossRef]
  29. H. Jerominek, T. D. Pope, C. Alain, R. Zhang, M. Lehoux, F. Picard, R. W. Fuchs, C. Grenier, Y. Rouleau, F. Cayer, S. Savard, G. Bilodeau, J.-F. Couillard, C. Larouche, L. N. Phong, “128 × 128 pixel uncooled bolometric FPA for IR detection and imaging,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 585–592 (1998). [CrossRef]
  30. S. Sedky, P. Fiorini, M. Caymax, C. Baert, L. Hermans, R. Mertens, “Characterization of bolometers based on polycrystalline silicon germanium alloys,” IEEE Electron Device Lett. 19, 376–378 (1998). [CrossRef]
  31. J. Gray, Z. Celik-Butler, D. P. Butler, M. Almasri, “Semiconducting YBaCuO as infrared detecting bolometers,” in Infrared Technology and Applications XXIV, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3436, 555–565 (1998). [CrossRef]
  32. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1992–1993).
  33. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).
  34. D. P. Neikirk, W. W. Lam, D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared and Millim. Waves 5, 245–278 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited