OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 16 — Jun. 1, 2001
  • pp: 2632–2642

Temperature-Induced Reversible Changes in the Spectral Characteristics of Fiber Bragg Gratings

Arif Hidayat, Qinglin Wang, Pierre Niay, Marc Douay, Bertrand Poumellec, Farid Kherbouche, and I. Riant  »View Author Affiliations


Applied Optics, Vol. 40, Issue 16, pp. 2632-2642 (2001)
http://dx.doi.org/10.1364/AO.40.002632


View Full Text Article

Acrobat PDF (264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is reported that reversible changes in the reflectivity of Bragg gratings can be induced by a change in the temperature of the grating (77 K < T < K). The changes have proved to be greater in highly doped Ge fibers than in standard fibers, whereas they could hardly be detected in hydrogenated fibers. The sign of the change for type I gratings was opposite that for type IIA gratings. The changes are likely due to a temperature-induced increase (or a decrease) in the amplitude of the refractive-index modulation. Possible mechanisms for these changes in modulation are discussed. Interestingly for the purpose of correcting data of isothermal accelerated aging experiments, a numerical relation that accounts for the temperature-induced changes in type I grating reflectivity is given.

© 2001 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1480) Optical devices : Bragg reflectors
(350.2770) Other areas of optics : Gratings

Citation
Arif Hidayat, Qinglin Wang, Pierre Niay, Marc Douay, Bertrand Poumellec, Farid Kherbouche, and I. Riant, "Temperature-Induced Reversible Changes in the Spectral Characteristics of Fiber Bragg Gratings," Appl. Opt. 40, 2632-2642 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-16-2632


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
  2. K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
  3. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
  4. K. O. Hill, P. St. J. Russell, G. Meltz, and A. M. Vengsarkar, eds., special issue on fiber gratings, photosensitivity, and poling,” J. Lightwave Technol. 15, 1261–1503 (1997).
  5. R. Kashyap, Fiber Bragg Gratings, P. L. Kelly, I. Kaminov, and G. Agrawal, eds., Optics and Photonics Series (Academic, San Diego, Calif., 1999), Chap. 1.
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
  7. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
  8. M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
  9. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature compensating package for optical fiber gratings,” Appl. Opt. 34, 6859–6861 (1995).
  10. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
  11. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
  12. S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
  13. K. Saito and A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
  14. M. Takahashi, T. Fujiwara, T. Kawachi, and A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
  15. B. Leconte, “Contribution à l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille 1, Lille, France, 1998).
  16. T. E. Tsai, G. Williams, and E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).
  17. B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
  18. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
  19. M. V. Bazylenko, D. Moss, and J. Canning, “Complex photosensitivity observed in germanosilicate planar waveguides,” Opt. Lett. 23, 697–699 (1998).
  20. J. Canning and M. Aslund, “Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings,” Opt. Lett. 24, 463–465 (1999).
  21. P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, and L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
  22. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
  23. K. S. Chiang, M. G. Sceats, and D. Wong, “Ultraviolet photolytic induced changes in optical fibers: the thermal expansion coefficient,” Opt. Lett. 18, 965–967 (1993).
  24. B. Poumellec, P. Niay, M. Douay, and J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
  25. D. Wong, “Analysis and applications of stresses in optical fibres and sensors,” P.h.D. dissertation (University of New South Wales, Sidney, NSW, Australia, 1990).
  26. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula and E. Udd, eds., Proc. SPIE 1169, 98–107 (1989).
  27. A. Hidayat, Q. Wang, M. Douay, and P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.
  28. S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767–3777 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited