OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 16 — Jun. 1, 2001
  • pp: 2643–2654

Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays

David J. F. Cooper, Trent Coroy, and Peter W. E. Smith  »View Author Affiliations


Applied Optics, Vol. 40, Issue 16, pp. 2643-2654 (2001)
http://dx.doi.org/10.1364/AO.40.002643


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-division multiplexing is a promising method for the interrogation of fiber-optic Bragg grating sensors arrays for measurement of strain and temperature. We examine the performance of these systems to determine the parameters for high-sensitivity, low-cross-talk operation. It is shown that the performance can be greatly improved by use of a short time resolution in the demultiplexing process. We propose a new method of demultiplexing with an electro-optic modulator to read out the sensor pulses by gating the signal with 400-ps resolution. The system is demonstrated experimentally to provide 0.15-µε/ Hz strain resolution in a 50-Hz bandwidth within a full-scale range of 8000 µε. The system parameters are capable of handling at least 50 time-addressed sensors on a single fiber.

© 2001 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4230) Fiber optics and optical communications : Multiplexing
(230.1480) Optical devices : Bragg reflectors
(230.2090) Optical devices : Electro-optical devices

History
Original Manuscript: September 18, 2000
Revised Manuscript: February 13, 2001
Published: June 1, 2001

Citation
David J. F. Cooper, Trent Coroy, and Peter W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays," Appl. Opt. 40, 2643-2654 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-16-2643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997). [CrossRef]
  2. R. M. Measures, Fiber Optic Smart Structures, E. Udd, ed. (Wiley, Toronto, 1995).
  3. W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992). [CrossRef]
  4. C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994). [CrossRef] [PubMed]
  5. C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).
  6. T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996). [CrossRef]
  7. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993). [CrossRef]
  8. S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992). [CrossRef]
  9. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976). [CrossRef]
  10. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989). [CrossRef]
  11. M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Atkins, E. J. Frieble, “Broadband square pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998). [CrossRef]
  12. H. A. Haus, E. P. Ippen, “Short-pulse fiber lasers,” in Conference on Lasers and ElectroOptics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 522–523.
  13. I. N. Duling, M. L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995). [CrossRef]
  14. T. A. Berkoff, A. D. Kersey, “Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator,” in Second European Conference onSmart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 342–345 (1994).
  15. M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).
  16. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997). [CrossRef]
  17. R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998). [CrossRef]
  18. D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996). [CrossRef]
  19. T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited