OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 17 — Jun. 10, 2001
  • pp: 2844–2859

Nonlinear processing and fractional-order filtering in a joint fractional Fourier-transform correlator: performance evaluation in multiobject recognition

Renu Tripathi, Gour S. Pati, and Kehar Singh  »View Author Affiliations

Applied Optics, Vol. 40, Issue 17, pp. 2844-2859 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the correlation performance of a joint fractional Fourier-transform correlator (JFRTC) using computer simulation results. We present a mathematical analysis suggesting use of processing techniques based on a nonlinear transformation and fractional-order fractional-power fringe-adjusted filter to attain improved performance in terms of discrimination sensitivity and input space–bandwidth utilization. Optimal noise performance for the JFRTC is predicted in the presence of additive white Gaussian noise. An all-optical implementation scheme based on incoherent erasure in a photorefractive crystal is proposed.

© 2001 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.4550) Image processing : Correlators
(100.5010) Image processing : Pattern recognition
(200.4740) Optics in computing : Optical processing

Original Manuscript: March 14, 2000
Revised Manuscript: March 12, 2001
Published: June 10, 2001

Renu Tripathi, Gour S. Pati, and Kehar Singh, "Nonlinear processing and fractional-order filtering in a joint fractional Fourier-transform correlator: performance evaluation in multiobject recognition," Appl. Opt. 40, 2844-2859 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  2. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
  3. L. M. Bernardo, O. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994). [CrossRef]
  4. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995). [CrossRef] [PubMed]
  5. D. Mendlovic, Y. Bitran, R. G. Dorsch, A. W. Lohmann, “Optical fractional correlation: experimental results,” J. Opt. Soc. Am. A 12, 1665–1670 (1995). [CrossRef]
  6. S. H. Song, J.-S. Jeong, S. Park, E. H. Lee, “Planar optical implementation of fractional correlation,” Opt. Commun. 143, 287–293 (1997). [CrossRef]
  7. A. M. Almansareh, M. A. Abushagur, “Fractional correlations based on the modified fractional order Fourier transform,” Opt. Eng. 37, 175–184 (1998). [CrossRef]
  8. S. Garnieri, M. del Carmen Laspiralla, N. Bolognini, E. E. Sicre, “Space-variant optical correlator based on the fractional Fourier transform: implementation by the use of a photorefractive Bi12GeO20 (BGO) holographic filter,” Appl. Opt. 35, 6951–6954 (1996). [CrossRef]
  9. A. W. Lohmann, D. Mendlovic, “Fractional joint transform correlator,” Appl. Opt. 36, 7402–7407 (1997). [CrossRef]
  10. C. J. Kuo, Y. Luo, “Generalized joint fractional Fourier transform correlators: a compact approach,” Appl. Opt. 37, 8270–8276 (1998). [CrossRef]
  11. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  12. M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993). [CrossRef] [PubMed]
  13. L. B. Almeida, “Product and convolution theorems for the fractional Fourier transform,” IEEE Signal Process. Lett. 4, 15–17 (1997). [CrossRef]
  14. M. S. Alam, O. Perez, M. A. Karim, “Preprocessed multiobject joint transform correlator,” Appl. Opt. 32, 3102–3107 (1993). [CrossRef] [PubMed]
  15. S. Zhong, J. Jiang, S. Liu, C. Li, “Binary joint transform correlator based on differential processing of the joint power spectrum,” Appl. Opt. 36, 1776–1780 (1997). [CrossRef] [PubMed]
  16. H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
  17. P. Pellat-Finet, “Fresnel diffraction and fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
  18. A. R. Weeks, H. R. Myler, H. G. Wenaas, “Computer-generated noise images for the evaluation of image processing algorithms,” Opt. Eng. 32, 982–992 (1993). [CrossRef]
  19. Y. Bitran, Z. Zalevsky, D. Mendlovic, R. G. Dorsch, “Fractional correlation operation: performance analysis,” Appl. Opt. 35, 297–303 (1996). [CrossRef] [PubMed]
  20. R. Tripathi, G. S. Pati, K. Singh, “Photorefractive joint transform correlator using incoherent-erasure in two- and four-wave mixing geometries in a BaTiO3 crystal,” Opt. Eng. 37, 2148–2155 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited