OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 17 — Jun. 10, 2001
  • pp: 2895–2901

Dual-use chromophores for photorefractive and irreversible photochromic applications

Kristi D. Harris, Rajani Ayachitula, Shane J. Strutz, L. Michael Hayden, and Robert J. Twieg  »View Author Affiliations

Applied Optics, Vol. 40, Issue 17, pp. 2895-2901 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic experiments are performed on a series of dual-use chromophore molecules wherein both irreversible photochromic and erasable photorefractive holographic gratings can be written in the same storage volume. At 675 nm, the chromophore undergoes a photochemical reaction leading to the creation of irreversible holographic gratings. Alternatively, at longer wavelengths, application of an electric field during grating formation allows the storage of erasable photorefractive holograms in the same location as previously stored permanent photochemical holograms. Photochemical gratings (η > 60%) can be written in less than 1 min, whereas photorefractive gratings (η > 50%) can be written in less than 1 s. The photochemical gratings have a diffusion-limited dark half-life of as long as two weeks depending on the glass transition temperature of the composite.

© 2001 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(100.0100) Image processing : Image processing
(160.2900) Materials : Optical storage materials
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers

Original Manuscript: September 5, 2000
Revised Manuscript: March 12, 2001
Published: June 10, 2001

Kristi D. Harris, Rajani Ayachitula, Shane J. Strutz, L. Michael Hayden, and Robert J. Twieg, "Dual-use chromophores for photorefractive and irreversible photochromic applications," Appl. Opt. 40, 2895-2901 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
  2. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999). [CrossRef]
  3. F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Agnew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997). [CrossRef]
  4. A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997). [CrossRef]
  5. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
  6. P. M. Lundquist, C. Poga, R. G. DeVoe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996). [CrossRef] [PubMed]
  7. D. Kokron, S. M. Evanko, L. M. Hayden, “Launching of guided waves in a photorefractive polymer by two-beam coupling,” Opt. Lett. 20, 2297–2299 (1995). [CrossRef] [PubMed]
  8. M. B. Klein, G. D. Bacher, A. Grunnet-Jepsen, D. Wright, W. E. Moerner, “Homodyne detection of ultrasonic surface displacements using two-wave mixing in photorefractive polymers,” Opt. Commun. 162, 79–84 (1999). [CrossRef]
  9. P. M. Jeffrey, S. L. Clapham, R. W. Eason, D. A. Eason, D. A. Fish, A. K. Powell, T. J. Hall, N. A. Vainos, “Mechanism of photorefractive enhancement of photochromic gratings in BSO-experimental results and phenomenological modelling,” Opt. Commun. 98, 357–365 (1993). [CrossRef]
  10. D. A. Fish, A. K. Powell, T. J. Hall, P. M. Jeffrey, R. W. Eason, “Theoretical analysis of mechanism of photorefractive enhancement of photochromic gratings in BSO,” Opt. Commun. 98, 349–356 (1993). [CrossRef]
  11. J. Frejlich, P. M. Garcia, “Quasipermanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals,” Appl. Phys. A 55, 49–54 (1992). [CrossRef]
  12. K. Horiuchi, K. Kuroda, “Photorefractive and photochromic effects in undoped GaP at high temperature,” Opt. Commun. 113, 487–492 (1995). [CrossRef]
  13. N. A. Vainos, S. L. Clapham, R. W. Eason, “Applications of multiplexed real time and permanent holographic recording in photorefractive BSO,” Appl. Opt. 28, 4386–4392 (1989). [CrossRef] [PubMed]
  14. A. Chen, S. Fan, H. Ding, C. Wu, “Extension of the velocity detection range of a tracking novelty filter that uses LiNbO3 and strontium barium niobate,” Appl. Opt. 33, 2998–3002 (1994). [CrossRef] [PubMed]
  15. S. R. Marder, B. Kippelen, A. K.-Y. Jen, N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications,” Nature (London) 388, 845–851 (1997). [CrossRef]
  16. R. Wortmann, P. M. Lundquist, R. J. Twieg, C. Geletneky, C. R. Moylan, Y. Jia, R. G. DeVoe, D. M. Burland, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, “A novel sensitized photochromic organic glass for holographic optical storage,” Appl. Phys. Lett. 69, 1657–1659 (1996). [CrossRef]
  17. S. J. Strutz, L. M. Hayden, “Quasipermanent photochemical gratings in a dual use photorefractive polymer composite,” Appl. Phys. Lett. 74, 2749–2751 (1999). [CrossRef]
  18. R. Lemke, “Solvatochromiie von 80 mμ in verschiedenen Alkoholen bei Arylidenisophoron-Abkommlingen,” Chem. Ber. 103, 1894–1895 (1970). [CrossRef]
  19. S. Ermer, S. M. Lovejoy, D. S. Leung, H. Warren, C. R. Moylan, R. J. Twieg, “Synthesis and nonlinearity of triene chromophores containing the cyclohexene ring structure,” Chem. Mater. 9, 1437–1442 (1997). [CrossRef]
  20. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000). [CrossRef]
  21. L. M. Hayden, S. C. Brower, S. J. Strutz, “Pressure dependence of the depoling temperature in nonlinear optical polymers,” Macromolecules 30, 2734–2737 (1997). [CrossRef]
  22. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994). [CrossRef]
  23. R. Wortmann, C. Glania, P. Krämer, K. Lukaszuk, R. Matschiner, R. J. Twieg, F. You, “Highly transparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999). [CrossRef]
  24. A. Akella, S. L. Sochava, L. Hesselink, “Synthesis and characterization of photochromic organic films for holographic recording,” Opt. Lett. 22, 919–921 (1997). [CrossRef] [PubMed]
  25. D. B. Hall, A. Dhinojwala, J. M. Torkelson, “Translation-rotation paradox for diffusion in glass-forming polymers: the role of the temperature dependence of the relaxation time distribution,” Phys. Rev. Lett. 79, 103–106 (1997). [CrossRef]
  26. G. Williams, D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970). [CrossRef]
  27. C. P. Lindsey, G. D. Patterson, “Detailed comparison of the Williams-Watts and Cole-Davidson functions,” J. Chem. Phys. 73, 3348–3357 (1980). [CrossRef]
  28. M. T. Cicerone, P. A. Wagner, M. D. Ediger, “Translational diffusion on heterogeneous lattices: a model for dynamics in glass forming materials,” J. Phys. Chem. B 101, 8727–8734 (1997). [CrossRef]
  29. N. E. McCrum, B. E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited