OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 17 — Jun. 10, 2001
  • pp: 2902–2908

Practical Realization of Massively Parallel Fiber-Free-Space Optical Interconnects

Matthias Gruber, Jürgen Jahns, El Mehdi El Joudi, and Stefan Sinzinger  »View Author Affiliations


Applied Optics, Vol. 40, Issue 17, pp. 2902-2908 (2001)
http://dx.doi.org/10.1364/AO.40.002902


View Full Text Article

Acrobat PDF (1500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel approach to realizing massively parallel optical interconnects based on commercially available multifiber ribbons with MT-type connectors and custom-designed planar-integrated free-space components. It combines the advantages of fiber optics, that is, a long range and convenient and flexible installation, with those of (planar-integrated) free-space optics, that is, a wide range of implementable functions and a high potential for integration and parallelization. For the interface between fibers and free-space optical systems a low-cost practical solution is presented. It consists of using a metal connector plate that was manufactured on a computer-controlled milling machine. Channel densities are of the order of 100/mm2 between optoelectronic VLSI chips and the free-space optical systems and 1/mm2 between the free-space optical systems and MT-type fiber connectors. Experiments in combination with specially designed planar-integrated test systems prove that multiple one-to-one and one-to-many interconnects can be established with not more than 10% uniformity error.

© 2001 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(200.0200) Optics in computing : Optics in computing
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics
(350.3950) Other areas of optics : Micro-optics

Citation
Matthias Gruber, Jürgen Jahns, El Mehdi El Joudi, and Stefan Sinzinger, "Practical Realization of Massively Parallel Fiber-Free-Space Optical Interconnects," Appl. Opt. 40, 2902-2908 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-17-2902


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. H. Collet, D. Litaize, J. Van Campenhout, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, and A. Louri, “Architectural approach to the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671–682 (2000).
  2. F. Tooley, “Optical interconnects do not require improved optoelectronic devices,” in Optics in Computing 1998, P. Chavel, D. A. B. Miller, and H. Thienpont, eds., Proc. SPIE 3490, 14–17 (1998).
  3. See the URL http://www.infineon.com.
  4. European Commission, Technology Roadmap, Optoelectronic Interconnects for Integrated Circuits, 2nd ed., Sept. 1999, http://www.cordis.lu/esprit/src/melop-rm.htm.
  5. R. Baets, B. Dhoedt, P. Heremans, S. Paineau, and S. Mennerat, “Technologies for optical interconnects between CMOS IC’s,” in Optics in Computing 1998, P. Chavel, D. A. B. Miller, and H. Thienpont, eds., Proc. SPIE 3490, 546–549 (1998).
  6. M. Jöhnck, B. Wittmann, and A. Neyer, “64-channel two-dimensional POF-based optical array interchip interconnect,” in Optics in Computing 1998, P. Chavel, D. A. B. Miller, and H. Thienpont, eds., Proc. SPIE 3490, 285–288 (1998).
  7. E. Griese, “Optical interconnections on printed circuit boards,” in Optics in Computing 2000, R. A. Lessard and T. Galstian, eds., Proc. SPIE 4089, 60–71 (2000).
  8. N. Suyal, F. Tooley, A. Fritze, J. Gourlay, J. Dines, A. McCarthy, A. Walker, and F. Bresson, “Multimode planar lightwave circuits using direct write of polymers,” in Optics in Computing 2000, R. A. Lessard and T. Galstian, eds., Proc. SPIE 4089, 54–59 (2000).
  9. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
  10. S. Sinzinger and J. Jahns, Microoptics (Wiley VCH, Weinheim, Germany, 1999).
  11. M. Gruber, S. Sinzinger, and J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
  12. W. Eckert, V. Arrizon, S. Sinzinger, and J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000).
  13. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
  14. A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
  15. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, and S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
  16. P. F. van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglas,”A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
  17. M. B. Stern, “Binary optics fabrication,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London 1997), pp. 53–85.
  18. M. Gale, “Direct writing of continuous-relief micro-optics,” Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London 1997), pp. 87–126.
  19. M. Oikawa and K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
  20. J. Bähr and K.-H. Brenner, “Realization and optimization of planar microlenses by Ag–Na ion-exchange techniques,” Appl. Opt. 35, 5102–5107 (1996).
  21. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
  22. See the URL http://www.ntt.co.jp.
  23. See the URL http://www.iec.ch.
  24. K. Dunkel, H.-D. Bauer, W. Ehrfeld, J. Hossfeld, L. Weber, G. Hörchert, and G. Müller, “Injection-moulded fibre ribbon connectors for parallel optical links fabricated by the LIGA technique,” J. Micromech. Microeng. 8, 301–306 (1998).
  25. M. Gruber, W. Eckert, and D. Hagedorn, “Ausrichtung fotolithografischer Masken relativ zu Wafern,” German patent pending (15 April 2000).
  26. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989).
  27. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  28. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
  29. J. Jahns and S. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin-film deposition,” Appl. Opt. 29, 931–936 (1990).
  30. P. Lukowicz, S. Sinzinger, K. Dunkel, and H.-D. Bauer, “Design of an opto-electronic VLSI/parallel fibre bus,” J. Opt. A 1, 367–370 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited