OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 18 — Jun. 20, 2001
  • pp: 2985–2997

Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements

Benoı̂t Lazzarotto, Max Frioud, Gilles Larchevêque, Valentin Mitev, Philippe Quaglia, Valentin Simeonov, Anne Thompson, Hubert van den Bergh, and Bertrand Calpini  »View Author Affiliations

Applied Optics, Vol. 40, Issue 18, pp. 2985-2997 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new lidar instrument has been developed to measure tropospheric ozone and water vapor at low altitude. The lidar uses Raman scattering of an UV beam from atmospheric nitrogen, oxygen, and water vapor to retrieve ozone and water-vapor vertical profiles. By numerical simulation we investigate the sensitivity of the method to both atmospheric and device perturbations. The aerosol optical effect in the planetary boundary layer, ozone interference in water-vapor retrieval, statistical error, optical cross talk between Raman-shifted channels, and optical cross talk between an elastically backscattered signal in Raman-shifted signals and an afterpulse effect are studied in detail. In support of the main conclusions of this model study, time series of ozone and water vapor obtained at the Swiss Federal Institute of Technology in Lausanne and during a field campaign in Crete are presented. They are compared with point monitor and balloon sounding measurements for daytime and nighttime conditions.

© 2001 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

Original Manuscript: June 14, 2000
Revised Manuscript: January 23, 2001
Published: June 20, 2001

Benoı̂t Lazzarotto, Max Frioud, Gilles Larchevêque, Valentin Mitev, Philippe Quaglia, Valentin Simeonov, Anne Thompson, Hubert van den Bergh, and Bertrand Calpini, "Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements," Appl. Opt. 40, 2985-2997 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: theory, Experiments, and Applications (Academic, San Diego, Calif., 1999).
  2. A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).
  3. P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).
  4. S. Perego, “A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland),” Meteorol. Atmos. Phys. 70, 43–69 (1999). [CrossRef]
  5. B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).
  6. L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998). [CrossRef]
  7. L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.
  8. E. V. Browell, S. Ismail, T. Shipley, “UV DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  9. P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).
  10. P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).
  11. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  12. D. Renault, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980). [CrossRef]
  13. A. J. Sedlacek, M. D. Ray, “Raman DIAL: application to areas characterized by varying aerosol burden,” presented at the 19th International Laser Radar Conference, Annapolis, Md., July 1998.
  14. D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988). [CrossRef]
  15. T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983). [CrossRef]
  16. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), p. 89.
  17. J. A. Sunesson, “Differential absorption lidar system, for routine measurement of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994). [CrossRef] [PubMed]
  18. W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in American Institute of Physics Conference Proceedings No. 100: Excimer Lasers, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.
  19. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  20. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994). [CrossRef]
  21. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987). [CrossRef]
  22. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  23. P. B. Coates, “A theory of afterpulse formation in photomultipliers and the prepulse height distribution,” J. Phys. D 6, 1862–1869 (1973). [CrossRef]
  24. T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983). [CrossRef]
  25. P. B. Coates, “The origins of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973). [CrossRef]
  26. B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999). [CrossRef]
  27. V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999). [CrossRef]
  28. H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994). [CrossRef]
  29. A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).
  30. W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.
  31. A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited