OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 18 — Jun. 20, 2001
  • pp: 3014–3018

Theory of a Tunable Fiber Ring Depolarizer Theory

Massimo Martinelli and Joseph C. Palais  »View Author Affiliations

Applied Optics, Vol. 40, Issue 18, pp. 3014-3018 (2001)

View Full Text Article

Acrobat PDF (104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The depolarizing properties of a fiber ring structure have been analyzed, and the analytical solution to the device optimization has been found. The result proves that a tunable fiber ring depolarizer can completely depolarize light for any input state of polarization.

© 2001 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components

Massimo Martinelli and Joseph C. Palais, "Theory of a Tunable Fiber Ring Depolarizer Theory," Appl. Opt. 40, 3014-3018 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. Hillerich and E. Weidel, “Polarization noise in single mode fibres and its reduction by depolarizers,” Opt. Quantum Electron. 15, 281–287 (1983).
  2. J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber Lyot depolarizer,” IEEE Photon. Technol. Lett. 11, 1449–1451 (1999).
  3. K. Böhm, P. Marten, K. Petermann, and E. Weidel, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
  4. B. Szafraniec and G. A. Sanders, “Theory of polarization evolution in interferometric fiber-optic depolarized gyros,” J. Lightwave Technol. 17, 579–590 (1999).
  5. H. Lefévre, The Fiber-Optic Gyroscope (Artech House, Boston, Mass., 1993), pp. 73–91.
  6. P. Shen and J. C. Palais, “Passive single-mode fiber depolarizer,” Appl. Opt. 38, 1686–1691 (1999).
  7. P. Shen, J. C. Palais, and C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
  8. D. R. Lutz, “A passive fiber-optic depolarizer,” IEEE Photon. Technol. Lett. 5, 463–465 (1993).
  9. W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–479 (1983).
  10. R. Ulrich, Fiber-Optic Rotation Sensors (Springer-Verlag, Berlin, 1982), pp. 52–77.
  11. C.-L. Chen and W. K. Burns, “Polarization characteristics of single-mode fiber couplers,” IEEE J. Quantum Electron. 18, 1589–1600 (1982).
  12. F. P. Kapron and N. F. Borrelli, “Birefringence in dielectric optical waveguides,” IEEE J. Quantum Electron. 8, 222–225 (1972).
  13. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1980), pp. 544–555.
  14. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, Calif., 1997), pp. 103–152.
  15. K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
  16. F. Heismann, “Compact electro-optic polarization scramblers for optically amplified lightwave systems,” J. Lightwave Technol. 14, 1801–1814 (1996).
  17. N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited