OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 18 — Jun. 20, 2001
  • pp: 3051–3059

Wavelength Tuning and Spectral Properties of Distributed Feedback Diode Lasers with a Short External Optical Cavity

Christian K. Laue, Ralf Knappe, Klaus-Jochen Boller, and Richard Wallenstein  »View Author Affiliations


Applied Optics, Vol. 40, Issue 18, pp. 3051-3059 (2001)
http://dx.doi.org/10.1364/AO.40.003051


View Full Text Article

Acrobat PDF (156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the wavelength tuning and spectral properties of distributed feedback (DFB) diode lasers operated with a plane external cavity (XC) mirror positioned as close as possible to the diode-laser front facet. These lasers generate single-frequency near IR radiation at wavelengths of 1392, 1580, 1602, and 1653 nm. A piezoelectric variation of the XC length provided continuous single-frequency tuning to as high as 19 GHz. A further benefit of XC DFB lasers is a residual amplitude modulation per gigahertz tuning of less than 10−3. The XC feedback also suppresses residual side-mode oscillations to less than 60 dB. The laser’s total intensity noise is close to the shot noise limit. The laser linewidth (measured in a beat note experiment) is less than 90 kHz within an acquisition time of 40 ms. The advantageous properties of XC DFB lasers for molecular spectroscopy are demonstrated by recording R(3) 2ν3 overtone spectra of methane by single-scan single-pass absorption or frequency-modulation spectroscopy.

© 2001 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Citation
Christian K. Laue, Ralf Knappe, Klaus-Jochen Boller, and Richard Wallenstein, "Wavelength Tuning and Spectral Properties of Distributed Feedback Diode Lasers with a Short External Optical Cavity," Appl. Opt. 40, 3051-3059 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-18-3051


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1991).
  2. Y. Shevy and H. Deng, “Frequency-stable and ultra narrow-linewidth semiconductor laser locked directly to an atomic cesium transition,” Opt. Lett. 23, 472–474 (1998).
  3. G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, and M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
  4. R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32(3), 77–81 (1996).
  5. V. Ebert, K. U. Pleban, and J. Wolfrum, “In situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 206.
  6. C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35–40 (1996).
  7. L. Gianfrani, M. Gabrysch, C. Corsi, and P. De Natale, “Detection of H2O and CO2 with distributed feedback diode lasers: measurement of broadening coefficients and assessment of the accuracy levels for volcanic monitoring,” Appl. Opt. 36, 9481–9486 (1997).
  8. S. Chou, D. S. Baer, and R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4 near 1.65 μm,” Appl. Opt. 36, 3288–3292 (1997).
  9. S. Schäfer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, and V. Ebert, “Sensitive detection of methane with a 1.65-μm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
  10. D. M. Sonnenfroh and M. G. Allan, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
  11. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Diode-laser absorption measurements of CO2 near 2.0 μm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
  12. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochimica Acta A 54, 197–236 (1998).
  13. K. Y. Liou, Y. K. Jhee, G. Einsetin, R. S. Tucker, R. T. Ku, T. M. Shen, U. K. Chkrabarti, and P. J. Anthony, “Linewidth characteristics of fiber-extended-cavity distributed-feedback lasers,” Appl. Phys. Lett. 48, 1039–1041 (1986).
  14. A. R. Chraplyvy, K. Y. Liou, R. W. Tkach, G. Eisenstein, Y. K. Jhee, T. L. Koch, P. J. Anthony, and U. K. Chakrabarti, “Simple narrow-linewidth 1.5-μm InGaAsP DFB external-cavity laser,” Electron. Lett. 22, 88–89 (1986).
  15. F. S. Pavone, P. Cancio, C. Corsi, M. Inguscio, R. U. Martinelli, and R. J. Menna, “Linewidth and tuning characteristics of a mirror-extended cavity distributed feedback 1.65-μm diode laser,” Appl. Phys. B 60, 249–253 (1995).
  16. Y. Uenishi, K. Honma, and S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1209 (1996).
  17. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983).
  18. P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
  19. S. Kasapi, S. Lathi, and Y. Yamamoto, “Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22, 478–480 (1997).
  20. C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366–374 (1998).
  21. P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
  22. C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952–3960 (1998).
  23. C. Becher and K.-J. Boller, “Low-intensity-noise operation of Nd:YVO4 microchip lasers by pump-noise suppression,” J. Opt. Soc. Am. B 16, 286–297 (1999).
  24. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–300 (1966).
  25. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
  26. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited