OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 18 — Jun. 20, 2001
  • pp: 3124–3131

Modeling Optical Breakdown in Dielectrics During Ultrafast Laser Processing

Ching-Hua Fan and Jon P. Longtin  »View Author Affiliations

Applied Optics, Vol. 40, Issue 18, pp. 3124-3131 (2001)

View Full Text Article

Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser ablation is widely used in micromachining, manufacturing, thin-film formation, and bioengineering applications. During laser ablation the removal of material and quality of the features depend strongly on the optical breakdown region induced by the laser irradiance. The recent advent of amplified ultrafast lasers with pulse durations of less than 1 ps has generated considerable interest because of the ability of the lasers to process virtually all materials with high precision and minimal thermal damage. With ultrashort pulse widths, however, traditional breakdown models no longer accurately capture the laser–material interaction that leads to breakdown. A femtosecond breakdown model for dielectric solids and liquids is presented that characterizes the pulse behavior and predicts the time- and position-dependent breakdown region. The model includes the pulse propagation and small spatial extent of ultrashort laser pulses. Model results are presented and compared with classical breakdown models for 1-ns, 1-ps, and 150-fs pulses. The results show that the revised model is able to model breakdown accurately in the focal region for pulse durations of less than 10 ps. The model can also be of use in estimating the time- and position-resolved electron density in the interaction volume, the breakdown threshold of the material, shielding effects, and temperature distributions during ultrafast processing.

© 2001 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7120) Ultrafast optics : Ultrafast phenomena

Ching-Hua Fan and Jon P. Longtin, "Modeling Optical Breakdown in Dielectrics During Ultrafast Laser Processing," Appl. Opt. 40, 3124-3131 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. C. Stuart, M. D. Perry, M. D. Feit, L. B. Da Silva, A. M. Nev Rubenchik, S. Herman, H. Nguyen, and P. Armstrong, “Femtosecond laser processing,” in Conference on Laser and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 159–160.
  2. T. R. Hsu, MEMS: Design, Manufacture and Processing (McGraw-Hill, New York, 2001), Chap. 4.
  3. J. Ihlemann, A. Scholl, H. Schmidt, and B. Wolff-Rottke, “Nanosecond and femtosecond excimer-laser ablation of oxide ceramics,” Appl. Phys. A 60, 411–417 (1995).
  4. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
  5. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
  6. J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
  7. S. Küper and M. Stuke, “Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses,” Appl. Phys. Lett. 54, 4–6 (1989).
  8. J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
  9. J. P. Longtin and C. L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
  10. J. P. Longtin, “Using multiphoton absorption with high-intensity lasers to heat transparent liquids,” Chem. Eng. Technol. 22, 77–80 (1999).
  11. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A 61, 33–37 (1995).
  12. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
  13. J. Jandeleit, G. Urbasch, H. D. Hoffmann, H. G. Treusch, and E. W. Kreutz, “Picosecond laser ablation of thin copper films,” Appl. Phys. A 63, 117–121 (1996).
  14. G. Herbst, M. Steiner, G. Marowsky, and E. Matthias, “Ablation of Si and Ge using UV photoablation,” in Advanced Laser Processing of Materials–Fundamentals and Applications, Mater. Res. Soc. Symp. Proc. 397, 69–74 (1996).
  15. I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys. A 67, 391–395 (1998).
  16. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2, 801–809 (1996).
  17. R. Esenaliev, A. Oraevsky, S. Rastegar, C. Frederickson, and M. Motamedi, “Mechanism of dye-enhanced pulsed laser ablation of hard tissues: implications for dentistry,” IEEE J. Sel. Top. Quantum Electron. 2, 836–846 (1996).
  18. D. X. Hammer, G. D. Noojin, R. J. Thomas, C. E. Clary, B. A. Rockwell, C. A. Toth, and W. P. Roach, “Intraocular laser surgical probe for membrane disruption by laser-induced breakdown,” Appl. Opt. 36, 1684–1693 (1997).
  19. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum. Electron. 21, 155–248 (1997).
  20. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
  21. M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, Jr., and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
  22. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 27.
  23. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  24. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulsed laser micromachining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
  25. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J Quantum Electron. 31, 2241–2249 (1995).
  26. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J Quantum Electron. 32, 670–677 (1996).
  27. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–859 (1996).
  28. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
  29. J. R. Bettis, “Correlation among the laser-induced breakdown thresholds in solids, liquids, and gases,” Appl. Opt. 31, 3448–3452 (1992).
  30. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1. Analysis of the plasma starting times,” Appl. Opt. 27, 3661–3668 (1988).
  31. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt. 36, 5630–5640 (1997).
  32. Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966).
  33. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17.
  34. A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
  35. F. Docchio, P. Regondi, M. R. C. Capon, and J. Mellerio, “Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2. Plasma luminescence and shielding,” Appl. Opt. 27, 3669–3674 (1988).
  36. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
  37. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J Quantum Electron. 33, 127–137 (1997).
  38. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
  39. D. J. Stolarski, J. Hardman, C. M. Bramlette, G. D. Noojin, R. J. Thomas, B. A. Rockwell, and W. P. Roach, “Integrated light spectroscopy of laser induced breakdown in aqueous media,” in Laser–Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE 2391, 100–109 (1995).
  40. R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, “Time-resolved spectroscopy of laser induced breakdown in water,” Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE 2681, 402–410 (1996).
  41. M. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited