OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 19 — Jul. 1, 2001
  • pp: 3244–3255

Technique for narrow-band imaging in the far ultraviolet based on aberration-corrected holographic gratings

Erik Wilkinson, Rémy Indebetouw, and Matthew Beasley  »View Author Affiliations


Applied Optics, Vol. 40, Issue 19, pp. 3244-3255 (2001)
http://dx.doi.org/10.1364/AO.40.003244


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a new family of imaging spectrometer designs that combine the imaging power of two-element telescopes with the aberration control of first-generation holographic gratings. The resulting optical designs provide high spatial resolution over modest fields of view at selectable wavelengths. These all-reflective designs are particularly suited for narrow-band imaging below 1050 Å, the wavelength below which there are no transmitting materials in the UV. We have developed designs to efficiently map the spatial distribution of UV-emitting material. This mapping capability is absent in current and future astronomical instruments but is crucial to the understanding of the nature of a variety of astrophysical phenomena. Although our examples focus on UV wavelengths, the design concept is applicable to any wavelength.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1000) Holography : Aberration compensation
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

History
Original Manuscript: November 29, 2000
Revised Manuscript: April 12, 2001
Published: July 1, 2001

Citation
Erik Wilkinson, Rémy Indebetouw, and Matthew Beasley, "Technique for narrow-band imaging in the far ultraviolet based on aberration-corrected holographic gratings," Appl. Opt. 40, 3244-3255 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-19-3244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chakrabarti, R. Kimble, S. Bowyer, “Spectroscopy of the EUV (350–1400Å) nightglow,” J. Geophys. Res. 89, 5660–5664 (1984). [CrossRef]
  2. R. R. Meier, “Ultraviolet spectroscopy and remote sensing of the upper atmosphere,” Space Sci. Rev. 58, 1–185 (1991). [CrossRef]
  3. B. C. Bush, S. Chakrabarti, “Analysis of Lyman α and He I 584Å airglow measurements using a spherical radiative transfer model,” J. Geophys. Res. 100, 19609–19625 (1995). [CrossRef]
  4. A. H. Laufer, J. A. Pirog, J. R. McNesby, “Effect of temperature on the vacuum ultraviolet transmittance of lithium fluoride, calcium fluoride, barium fluoride, and sapphire,” J. Opt. Soc. Am. 55, 64–66 (1965). [CrossRef]
  5. W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971). [CrossRef] [PubMed]
  6. R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, C. M. Fleetwood, “Optical coatings and materials for ultraviolet space applications,” Astron. Soc. Pac. Conf. Ser. 164, 406–419 (1999).
  7. J. Edelstein, “Reflection/suppression coatings for 900–1200 A radiation,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. SPIE1160, 19–25 (1989). [CrossRef]
  8. H. Ford, F. Bartko, P. Bely, T. Broadhurst, C. Burrows, E. Cheng, M. Clampin, J. Crocker, P. Feldman, D. Golimowki, G. Hartig, G. Illingworth, R. Kimble, M. Lesser, G. Miley, S. Neff, M. Postman, W. Sparks, Z. Tsvetanov, R. White, P. Sullivan, C. Krebs, D. Leviton, T. LaJeunesse, B. Burmester, S. Fike, R. Johnson, B. Slusher, P. Volmer, B. Woodruff, “The Advanced Camera for the Hubble Space Telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 234–248 (1998). [CrossRef]
  9. G. B. Semenov, A. K. Aristov, “Using narrow-band holographic reflection filters to protect security holograms against coherent-light copying,” J. Opt. Technol. 67, 592–595 (2000). [CrossRef]
  10. J. C. Green, E. Wilkinson, S. D. Friedman, “Design of the Far Ultraviolet Spectroscopic Explorer spectrograph,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 12–19 (1994). [CrossRef]
  11. J. A. Morse, J. C. Green, D. Ebbets, J. P. Andrews, S. R. Heap, C. Leitherer, J. Linsky, B. D. Savage, J. M. Shull, T. P. Snow, A. S. Stern, O. H. M. Siegmund, J. T. Stocke, E. Wilkinson, K. R. Brownsberger, “Performance overview and science goals of the Cosmic Origins Spectrograph for the Hubble Space Telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 361–368 (1998). [CrossRef]
  12. G. Andersen, J. Munch, P. Veitch, “Compact, holographic correction of aberrated telescopes,” Appl. Opt. 36, 1427–1432 (1997). [CrossRef] [PubMed]
  13. G. Andersen, R. J. Knize, “Holographically corrected microscope with a large working distance,” Appl. Opt. 37, 1849–1853 (1998). [CrossRef]
  14. G. Andersen, R. J. Knize, “Holographically corrected telescope for high-bandwidth optical communications,” Appl. Opt. 38, 6833–6835 (1999). [CrossRef]
  15. C. F. McKee, J. P. Ostriker, “A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate,” Astrophys. J. 218, 148–169 (1977). [CrossRef]
  16. W. P. Blair, K. S. Long, O. Vancura, C. W. Bowers, A. F. Davidsen, W. V. D. Dixon, S. T. Durrance, P. D. Feldman, H. C. Ferguson, R. C. Henry, R. A. Kimble, G. A. Kriss, J. W. Kruk, H. W. Moos, T. R. Gull, “Discovery of a fast radiative shock in the Cygnus Loop using the Hopkins Ultraviolet Telescope,” Astrophys. J. Lett. 379, L33–L36 (1991). [CrossRef]
  17. H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974). [CrossRef]
  18. C. Palmer, W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33, 820–829 (1994). [CrossRef]
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), Chap. 10, pp. 402–406.
  20. D. Schroeder, Astronomical Optics (Academic, San Diego, Calif., 1987), Chap. 6.
  21. J. C. Raymond, W. P. Blair, R. A. Fesen, T. R. Gull, “The structure and emission spectrum of a nonradiative shock wave in the Cygnus Loop,” Astrophys. J. 275, 636–644 (1983). [CrossRef]
  22. J. C. Raymond, “Shock waves in the interstellar medium,” Astrophys. J. Suppl. 39, 1–27 (1979). [CrossRef]
  23. W. P. Blair, R. Sankrit, J. C. Raymond, K. S. Long, “Distance to the Cygnus Loop from the Hubble Space Telescope imaging of the primary shock front,” Astron. J. 118, 942–947 (1999). [CrossRef]
  24. K. S. Long, W. P. Blair, O. Vancura, C. W. Bowers, A. F. Davidsen, J. C. Raymond, “Spectroscopy of a Balmer-dominated filament in the Cygnus Loop with the Hopkins Ultraviolet Telescope,” Astrophys. J. 400, 214–221 (1992). [CrossRef]
  25. D. P. Cox, J. C. Raymond, “Preionization-dependent families of radiative shock waves,” Astrophys. J. 298, 651–659 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited