OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 19 — Jul. 1, 2001
  • pp: 3278–3287

Three-dimensional time-resolved optical tomography of a conical breast phantom

Jeremy C. Hebden, Hylke Veenstra, Hamid Dehghani, Elizabeth M. C. Hillman, Martin Schweiger, Simon R. Arridge, and David T. Delpy  »View Author Affiliations


Applied Optics, Vol. 40, Issue 19, pp. 3278-3287 (2001)
http://dx.doi.org/10.1364/AO.40.003278


View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 32-channel time-resolved imaging device for medical optical tomography has been employed to evaluate a scheme for imaging the human female breast. The fully automated instrument and the reconstruction procedure have been tested on a conical phantom with tissue-equivalent optical properties. The imaging protocol has been designed to obviate compression of the breast and the need for coupling fluids. Images are generated from experimental data with an iterative reconstruction algorithm that employs a three-dimensional (3D) finite-element diffusion-based forward model. Embedded regions with twice the background optical properties are revealed in separate 3D absorption and scattering images of the phantom. The implications for 3D time-resolved optical tomography of the breast are discussed.

© 2001 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: August 10, 2000
Revised Manuscript: March 26, 2001
Published: July 1, 2001

Citation
Jeremy C. Hebden, Hylke Veenstra, Hamid Dehghani, Elizabeth M. C. Hillman, Martin Schweiger, Simon R. Arridge, and David T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-19-3278


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).
  2. B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987). [PubMed]
  3. M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.
  4. S. B. Colak, D. G. Papaioannou, G. W. ‘t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
  5. R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
  6. P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).
  7. S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997). [CrossRef] [PubMed]
  8. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997), http://www.opticsexpress.org . [CrossRef]
  9. M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  10. V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998). [CrossRef]
  11. D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999). [CrossRef]
  12. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000). [CrossRef]
  13. W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).
  14. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998). [CrossRef] [PubMed]
  15. U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998). [CrossRef] [PubMed]
  16. R. Model, M. Orlt, M. Walzel, R. Hünlich, “Optical imaging: three-dimensional approximation and perturbation approaches for time-domain data,” Appl. Opt. 37, 7968–7976 (1998). [CrossRef]
  17. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999). [CrossRef]
  18. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000). [CrossRef]
  19. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000). [CrossRef]
  20. M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef]
  22. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
  23. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001). [CrossRef] [PubMed]
  24. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).
  25. H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .
  26. D. S. Holder, “Design and electrical characteristics of an electrode array for electrical impedance tomography of the female breast,” Innov. Tech. Biol. Med. 16, 144–150 (1995).
  27. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  28. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991). [CrossRef] [PubMed]
  29. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996). [CrossRef] [PubMed]
  30. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996). [CrossRef] [PubMed]
  31. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996). [CrossRef] [PubMed]
  32. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000). [CrossRef] [PubMed]
  33. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998). [CrossRef] [PubMed]
  34. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000). [CrossRef] [PubMed]
  35. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  36. V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .
  37. D. A. Boas, T. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001), http://www.opticsexpress.org .
  38. J. Schoeberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ (2000).
  39. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  40. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000). [CrossRef] [PubMed]
  41. E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited