OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 2 — Jan. 10, 2001
  • pp: 240–248

Photonic Analog-To-Digital Conversion by use of Nonlinear Fabry-Perot Resonators

Hajime Sakata  »View Author Affiliations

Applied Optics, Vol. 40, Issue 2, pp. 240-248 (2001)

View Full Text Article

Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatially parallel analog-to-digital conversion is proposed with a nonlinear Fabry–Perot resonator used as a multifunctional photonic comparator based on the pulse circulation method. The transmissive output of the photonic comparator exhibits a binary signal of either 1 or 0, depending on whether the incident intensity is greater than or less than the switching intensity corresponding to the binary weight, respectively. The photonic comparator complimentarily reflects the incident light, either with or without subtraction of the binary weight, and returns the reflected light to the next-lower digit cycle. Starting at the most significant bit, the recursive circuit successively launches the binary-coded outputs. The analog-to-digital conversion numerically demonstrates up to 6-bit resolution without noticeable errors.

© 2001 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(200.3050) Optics in computing : Information processing
(200.4740) Optics in computing : Optical processing
(230.4320) Optical devices : Nonlinear optical devices

Hajime Sakata, "Photonic Analog-To-Digital Conversion by use of Nonlinear Fabry-Perot Resonators," Appl. Opt. 40, 240-248 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. H. Walden, “Analog-to-digital converter technology comparison,” in Gallium Arsenide Integrated Circuit (GaAs IC) Symposium 1994. Technical Digest 1994, 16th Annual (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 217–219.
  2. H. F. Taylor, “An optical analog-to-digital converter—Design and analysis,” IEEE J. Quantum. Electron. QE-15, 210–216 (1979).
  3. P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638–2645 (1994).
  4. B. Jalali and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett. 20, 1901–1903 (1995).
  5. Y. Li and Y. Zhang, “Optical analog-to-digital conversion using acousto-optic theta modulation and table lookup,” Appl. Opt. 30, 4368–4371 (1991).
  6. J. Cai and G. W. Taylor, “Optoelectronic thyristor-based photonic smart comparator for analog-to-digital conversion,” IEEE Photon. Technol. Lett. 11, 1295–1297 (1999).
  7. M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-to-digital converter,” Electron. Lett. 33, 2096–2097 (1997).
  8. A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34, 2012–2013 (1998).
  9. H. K. Liu, “Coherent optical analog-to-digital conversion using a single halftone photograph,” Appl. Opt. 17, 2181–2185 (1978).
  10. A. Armand, A. A. Sawchuk, T. C. Strand, D. Boswell, and B. H. Soffer, “Real-time parallel optical analog-to-digital conversion,” Opt. Lett. 5, 129–131 (1980).
  11. Y. Hayasaki, M. Mori, and N. Nishida, “Optical image transformations for fully parallel optical analog-to-digital conversion,” Appl. Opt. 37, 3607–3611 (1998).
  12. A. G. Larsson and J. Maserjian, “Molecular beam epitaxy engineered III–V semiconductor structures for low-power optically addressed spatial light modulators,” Opt. Eng. 31, 1576–1582 (1992).
  13. H. S. Hinton, “Progress in the smart pixel technologies,” IEEE J. Select. Topics Quantum Electron. 2, 14–23 (1996).
  14. K. D. Choquette and D. G. Deppe, eds., Vertical-Cavity Surface-Emitting Lasers, SPIE 3003 (1997).
  15. K. T. Jeong, O. Hanaizumi, I. Syuaib, S. Kashiwada, K. Kawase, and S. Kawakami, “Analysis and assessment of the gain of optically pumped surface-normal optical amplifiers,” Opt. Commun. 135, 227–232 (1997).
  16. R. Akins and S. Lee, “Coherent optical image amplification by an injection-locked dye amplifier at 632.8 nm,” Appl. Phys. Lett. 35, 660–663 (1979).
  17. X. Zureng, Z. Guiyan, and L. Fucheng, “Application of the CuBr vapor laser as an image-brightness amplifier in high-speed photography and photomicrography,” Appl. Opt. 31, 3395–3397 (1992).
  18. S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. 25, 1550–1564 (1986).
  19. K.-K. Law, J. L. Merz, and L. A. Coldren, “Superlattice surface-normal asymmetric Fabry–Perot reflection modulators: optical modulation and switching,” IEEE J. Quantum Electron. 29, 727–740 (1993).
  20. S. Tsuda, W. H. Knox, E. A. de Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995).
  21. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  22. S. Ohtsuka, T. Koyama, K. Tsunemoto, H. Nagata, and S. Tanaka, “Nonlinear optical property of CdTe microcrystallites doped glasses fabricated by laser evaporation method,” Appl. Phys. Lett. 61, 2953–2954 (1992).
  23. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).
  24. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
  25. B. S. Wherrett, “Fabry–Perot bistable cavity optimization on reflection,” IEEE J. Quantum Electron. QE-20, 646–651 (1984).
  26. H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45, 62–66 (1983).
  27. D. H. Sheingold, ed., Analog-Digital Conversion Handbook, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1986).
  28. B. M. Gordon, “Linear electronic analog/digital conversion architectures, their origins, parameters, limitations, and applications,” IEEE Trans. Circuits Syst. 25, 391–418(1978).
  29. W. Seka and E. Stüssi, “Nonlinear absorber characteristics and their effects on discrimination amplifiers,” J. Appl. Phys. 47, 3538–3541 (1976).
  30. A. Karlsson and M. Höijer, “Analysis of a VCLAD: vertical-cavity laser amplifier detector,” IEEE Photon. Technol. Lett. 7, 1336–1338 (1995).
  31. C. Gu, S. Campbell, J. Hong, Q. B. He, D. Zhang, and P. Yeh, “Optical thresholding and maximum operations,” Appl. Opt. 31, 5661–5665 (1992).
  32. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited