OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 2 — Jan. 10, 2001
  • pp: 283–298

Optoelectronic parallel-matching architecture: architecture description, performance estimation, and prototype demonstration

Keiichiro Kagawa, Kouichi Nitta, Yusuke Ogura, Jun Tanida, and Yoshiki Ichioka  »View Author Affiliations


Applied Optics, Vol. 40, Issue 2, pp. 283-298 (2001)
http://dx.doi.org/10.1364/AO.40.000283


View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optoelectronic parallel-matching architecture (PMA) that provides powerful processing capabilities in global processing compared with conventional parallel-computing architectures. The PMA is composed of a global processor called a parallel-matching (PM) module and multiple processing elements (PE’s). The PM module is implemented by a large-fan-out free-space optical interconnection and a PM smart-pixel array (PM-SPA). In the proposed architecture, by means of the PM module each PE can monitor the other PE’s by use of several kinds of global data matching as well as interprocessor communication. Theoretical evaluation of the performance shows that the proposed PMA provides tremendous improvement in global processing. A prototype demonstrator of the PM module is constructed on the basis of state-of-the-art optoelectronic devices and a diffractive optical element. The prototype is assumed for use in a multiple-processor system composed of 4 × 4 PE’s that are completely connected through bit-serial optical communication channels. The PM-SPA is emulated by a complex programmable device and a complementary metal-oxide semiconductor photodetector array. On the prototype demonstrator the fundamental operations of the PM module were verified at 15 MHz.

© 2001 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(200.4650) Optics in computing : Optical interconnects

History
Original Manuscript: November 30, 1999
Revised Manuscript: August 1, 2000
Published: January 10, 2001

Citation
Keiichiro Kagawa, Kouichi Nitta, Yusuke Ogura, Jun Tanida, and Yoshiki Ichioka, "Optoelectronic parallel-matching architecture: architecture description, performance estimation, and prototype demonstration," Appl. Opt. 40, 283-298 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-2-283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Almasi, A. Gottlieb, Highly Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1989).
  2. K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1985).
  3. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1996). [CrossRef]
  4. J. H. Collet, D. Litaize, J. V. Campenhout, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, A. Louri, “Architectural approach to the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671–682 (2000). [CrossRef]
  5. O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.
  6. D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.
  7. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996). [CrossRef] [PubMed]
  8. A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).
  9. A. Louri, S. Furlonge, C. Neocleous, “Experimental demonstration of the optical multimesh hypercube: scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 35, 6909–6919 (1996). [CrossRef] [PubMed]
  10. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999). [CrossRef]
  11. P. Berthomé, A. Ferreira, Optical Interconnections and Parallel Processing: Trends at the Interface (Kluwer, London, 1998). [CrossRef]
  12. L. Chambers, Practical Handbook of Genetic Algorithms (CRC Press, Boca Raton, Fla., 1995). [CrossRef]
  13. D. J. Reiley, J. M. Sasian, “Optical design of a free-spacephotonic switching system,” Appl. Opt. 36, 4497–4504 (1997). [CrossRef] [PubMed]
  14. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997). [CrossRef]
  15. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992). [CrossRef] [PubMed]
  16. T. M. Pinkson, M. Raksapatcharawong, Y. Choi, “WARRP core: optoelectronic implementation of network-router deadlock-handling mechanisms,” Appl. Opt. 37, 276–283 (1998). [CrossRef]
  17. R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, New York, 1988).
  18. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).
  19. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  20. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited