OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3417–3427

Fiber-Based Lidar for Atmospheric Water-Vapor Measurements

Liesl M. Little and George C. Papen  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3417-3427 (2001)
http://dx.doi.org/10.1364/AO.40.003417


View Full Text Article

Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and evaluation of a prototype fiber-based lidar system for autonomous measurement of atmospheric water vapor are presented. The system components are described, along with current limitations and options for improvement. Atmospheric measurements show good agreement with modeled signal returns from 400 to 1000 m but are limited below 400 m as a result of errors in signal processing caused by violation of the assumptions used in the derivation of the differential absorption lidar equation.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

Citation
Liesl M. Little and George C. Papen, "Fiber-Based Lidar for Atmospheric Water-Vapor Measurements," Appl. Opt. 40, 3417-3427 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3417


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Raval and V. Ramanathan, “Observational determination of the greenhouse effect,” Nature (London) 342, 758–761 (1989).
  2. D. Starr and S. H. Melfi, “The role of water vapor in climate,” NASA Conf. Publ. 3120, (1991).
  3. H. H. Aumann and R. J. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
  4. K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. Le Mone, D. Lilly, R. Rotunno, M. Shapire, R. Smith, and A. Thorpe, “Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).
  5. R. Cess, M. Zhang, P. Minnis, L. Corsetti, E. Dutton, B. Forgan, D. Garber, W. Gates, J. Hack, E. Harrison, X. Jing, J. Keihl, C. Long, J.-L. Morcrette, G. Potter, V. Ramanathan, B. Subasilar, C. Whitlock, D. Young, and Y. Zhou, “Absorption of solar radiation by clouds: observations versus models,” Science 267, 496–499 (1995).
  6. E. R. Kursinski, G. A. Hajj, W. I. Bertiger, S. S. Leroy, T. K. Meehan, L. J. Romans, J. T. Schofield, D. J. McCleese, W. G. Melbourne, C. L. Thornton, T. P. Yunck, J. R. Eyre, and R. N. Nagatani, “Initial results of radio occultation observations of Earth’s atmosphere using the global positioning system,” Science 271, 1107–1110 (1996).
  7. L. M. Little, “A fiber-based lidar system for atmospheric water vapor measurement,”Ph.D. dissertation (University of Illinois, Urbana-Champaign, Urbana, Ill., 2000).
  8. L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1983).
  9. H. Kildal and R. L. Byer, “Comparison of laser methods for the remote detection of atmospheric pollutants,” Proc. IEEE 59, 1644–1663 (1971).
  10. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
  11. E. Browell, S. Ismail, and B. Grossman, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
  12. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
  13. S. Ismail and E. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84 (1994).
  14. V. Brackett, S. Ismail, E. Browell, S. Kooi, M. Clayton, R. Ferrare, P. Minnis, B. Getzwich, and J. Staszel, “LASE validation experiment: preliminary processing of relative humidity from LASE derived water vapor in the middle to upper troposphere,” in 19th International Laser Radar Conference, NASA Conf. Publ. CP-1998–207671 (1998), pp. 465–468.
  15. G. M. Smith, J. S. Hughes, R. M. Lammert, M. L. Osowski, G. C. Papen, J. T. Verdeyen, and J. J. Coleman, “Wavelength tunable asymmetric cladding ridge waveguide distributed Bragg reflector lasers with very narrow linewidth,” IEEE J. Quantum Electron. 32, 1225–1229 (1996).
  16. G. M. Smith, “Single frequency semiconductor lasers,” Ph.D. dissertation (University of Illinois at Urbana-Champaign, Urbana, Ill., 1996).
  17. S. D. Roh, J. S. Hughes, R. M. Lammert, M. L. Osowski, K. J. Beernink, G. C. Papen, and J. J. Coleman, “Asymmetric cladding InGaAs–GaAs–AlGaAs ridge waveguide distributed Bragg reflector lasers with operating wavelengths of 915–935 nm,” IEEE Photon. Technol. Lett. 9, 285–287 (1997).
  18. L. M. Little, K. J. Beernink, G. C. Papen, and J. J. Coleman, “Performance characteristics of a narrow-linewidth distributed-Bragg-reflector laser for optical remote sensing systems,” IEEE Photon. Technol. Lett. 8, 1302–1304 (1996).
  19. P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940-nm water vapor absorption band using the 4F3/24I9/2 transition in Nd,” IEEE Photon. Technol. Lett. 9, 1478–1480 (1997).
  20. P. D. Dragic and G. C. Papen, “Efficient amplification using the 4F3/24I9/2 transition in Nd-doped silica fiber,” IEEE Photon. Technol. Lett. 11, 1593–1595 (1999).
  21. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
  22. D. Simeonidou, S. Hamidi, and A. Siddiqui, “Theoretical and experimental study of a new delayed self-heterodyne technique for laser spectral linewidth measurement,” Int. J. Optoelectron. 8, 727–736 (1993).
  23. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24, 1242–1247 (1988).
  24. M. J. F. Digonnet, K. Liu, and H. J. Shaw, “Characterization and optimization of the gain in Nd-doped single-mode fibers,” IEEE J. Quantum Electron. 26, 1105–1110 (1990).
  25. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  26. G. S. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86–0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  27. J. M. Rosen and N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991).
  28. J. M. Rosen and N. T. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. D 102, 11165–11169 (1997).
  29. T. Takamura and Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
  30. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
  31. A. Bucholtz, “Response to comment on Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 37, 430 (1998).
  32. F.-M. Bréon, “Comment on Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 37, 428–429 (1998).
  33. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  34. J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
  35. Z. Chu, T. D. Wilkerson, and U. N. Singh, “Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser,” Appl. Opt. 32, 992–998 (1993).
  36. L. P. Giver, G. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2 collision-broadening coefficients, self-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
  37. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, New York, 1977).
  38. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, “The strengths, widths, and shapes of infrared lines. II. The HCl fundamental,” Can. J. Phys. 34, 850–875 (1956).
  39. W. S. Benedict and S. Silverman, “Line shapes in the infrared,” Phys. Rev. 94, 752 (1954).
  40. L. D. Kaplan, “A quasi-statistical approach to the calculation of atmospheric transmission,” in Proceedings of the Toronto Meteorological Conference 1953 (Royal Meteorological Society, London, 1954), p. 49.
  41. S. Ismail and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989).
  42. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
  43. P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–279 (1974).
  44. S. Melle and A. MacGregor, “How to choose avalanche photodiodes,” Laser Focus World 31(10), 145–156 (1995).
  45. W. S. Benedict and L. D. Kaplan, “Calculation of line widths in H2O–N2 collisions,” J. Chem. Phys. 30, 388–398 (1959).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited