OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3428–3440

Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers

Patrick Chazette, Jacques Pelon, and Gérard Mégie  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3428-3440 (2001)
http://dx.doi.org/10.1364/AO.40.003428


View Full Text Article

Enhanced HTML    Acrobat PDF (210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spaceborne active lidar systems are under development to give new insight into the vertical distribution of clouds and aerosols in the atmosphere and to provide new information on variables required for improvement of forecast models and for understanding the radiative and dynamic processes that are linked to the dynamics of climate change. However, when they are operated from space, lidar systems are limited by atmospheric backscattered signals that have low signal-to-noise ratios (SNRs) on optically thin targets. Therefore specific methods of analysis have to be developed to ensure accurate determination of the geometric and optical properties of scattering layers in the atmosphere. A first approach to retrieving the geometric properties of semitransparent cloud and aerosol layers is presented as a function of false-alarm and no-detection probabilities for a given SNR. Simulations show that the geometric properties of thin cirrus clouds and the altitude of the top of the unstable atmospheric boundary layer can be retrieved with standard deviations smaller than 150 m for a vertical resolution of the lidar system in the 50–100-m range and a SNR of 3. The altitudes of the top of dense clouds are retrieved with a precision in altitude of better than 50 m, as this retrieval corresponds to a higher SNR value. Such methods have an important potential application to future spaceborne lidar missions.

© 2001 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: May 25, 2000
Revised Manuscript: March 20, 2001
Published: July 20, 2001

Citation
Patrick Chazette, Jacques Pelon, and Gérard Mégie, "Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers," Appl. Opt. 40, 3428-3440 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol. Soc. 71, 795–813 (1991). [CrossRef]
  2. O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995). [CrossRef]
  3. H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998). [CrossRef]
  4. K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  5. J. H. Seinfeld, S. N. Pandus, eds., Atmospheric Chemistry and Physics (Wiley, New York, 1998), p. 1326.
  6. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  7. S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985). [CrossRef]
  8. Z. Sorbjan, “Toward evaluation of heat fluxes in the convective boundary layer,” J. Appl. Meteorol. 34, 1092–1098 (1995). [CrossRef]
  9. C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996). [CrossRef]
  10. A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985). [CrossRef]
  11. G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987). [CrossRef]
  12. J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997). [CrossRef]
  13. S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999). [CrossRef]
  14. B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).
  15. W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993). [CrossRef]
  16. P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993). [CrossRef]
  17. A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994). [CrossRef]
  18. X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995). [CrossRef]
  19. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993). [CrossRef]
  20. M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998). [CrossRef]
  21. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  22. P. Chazette, G. Mégie, J. Pelon, “Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors,” Appl. Opt. 37, 7670–7679 (1998). [CrossRef]
  23. European Space Agency, “The Four Candidate Earth Explorer Mission: Earth Radiation Mission,” (European Space Agency, Munich, Germany, 1999).
  24. D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.
  25. P. Chazette, “Etude complémentaire des systèmes de télédétection laser et des sondeurs passifs pour la détermination des paramètres météorologiques à partir de plates-formes spatiales,” Ph.D. dissertation (University of Paris 7, Paris, 1990).
  26. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  27. M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1474 (1984). [CrossRef]
  28. S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985). [CrossRef]
  29. L. W. Carrier, G. A. Cato, K. J. Von Essen, “The backscattering and extinction of visible and infrared radiation by selected major cloud models,” Appl. Opt. 6, 1029–1216 (1967).
  30. E. P. Shettle, “Models of aerosols, clouds and precipitation for atmospheric propagation studies,” (Advisory Group for Aerospace Research and Development, Paris, 1989), p. 15.
  31. C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981). [CrossRef]
  32. K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).
  33. P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995). [CrossRef]
  34. C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987). [CrossRef]
  35. L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999). [CrossRef]
  36. C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998). [CrossRef]
  37. A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).
  38. C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurement,” J. Appl. Meteorol. 18, 1131–1143 (1979).
  39. F. Nicolas, L. R. Bissonnette, P. H. Flamant, “Lidar effective multiple-scattering coefficients in cirrus clouds,” Appl. Opt. 36, 3458–3468 (1997). [CrossRef] [PubMed]
  40. H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999). [CrossRef]
  41. R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.
  42. A. J. Heymsfied, “Cirrus uncinus generating cells and the evolution of cirriform clouds. II. The structure and circulation of the cirrus uncinus generating head,” J. Atmos. Sci. 4, 809–819 (1975). [CrossRef]
  43. A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994). [CrossRef]
  44. R. M. Measures, Laser Remote Sensing (Wiley/Interscience, New York, 1984).
  45. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited