OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3450–3461

Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description

Didier Bruneau, Philippe Quaglia, Cyrille Flamant, Mireille Meissonnier, and Jacques Pelon  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3450-3461 (2001)
http://dx.doi.org/10.1364/AO.40.003450


View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The airborne differential absorption lidar LEANDRE II, developed for profiling tropospheric water-vapor mixing ratios, is described. The emitter is a flash-lamp-pumped alexandrite laser, which operates in a double-pulse, dual-wavelength mode in the 727–736 nm spectral domain. Two 50-mJ successive on-line and off-line pulses with an output linewidth of 2.4 × 10-2 cm-1 and a spectral purity larger than 99.99% are emitted at a 50-µs time interval. The spectral positioning is controlled in real time by a wavemeter with an absolute accuracy of 5 × 10-3 cm-1. The receiver is a 30-cm aperture telescope with a 3.5-mrad field of view and a 1-nm filter bandwidth. These instrument characteristics are defined for measuring the water-vapor mixing ratio with an accuracy better than 0.5 g kg-1 in the first 5 km of the atmosphere with a range resolution of 300 m, integration on 100 shots, and an instrumental systematic error of less than 2%. The sensitivity study and first results are presented in part II [Appl. Opt. 40, 3462–3475 (2001)].

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

History
Original Manuscript: June 16, 2000
Revised Manuscript: January 26, 2001
Published: July 20, 2001

Citation
Didier Bruneau, Philippe Quaglia, Cyrille Flamant, Mireille Meissonnier, and Jacques Pelon, "Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description," Appl. Opt. 40, 3450-3461 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Study Group on GEWEX, “Concept of the global energy and water cycle experiment,” (World Meteorological Organization, Geneva, 1988).
  2. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  3. R. M. Schotland, “Some observation of the vertical profile of water vapor by means of a laser optical radar,” in Proceedings of the International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  4. C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982). [CrossRef]
  5. V. Wulfmeyer, J. Bosenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  6. S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989). [CrossRef]
  7. D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16, 1062–1076 (1999). [CrossRef]
  8. V. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  9. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. L. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994). [CrossRef] [PubMed]
  10. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. N. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the Eighteenth International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.
  11. G. Ehret, K. P. Hoinka, J. Stein, A. Fix, C. Kiemle, G. Poberaj, “Low stratospheric water vapor measured by an airborne DIAL,” J. Geophys. Res. 104, 31,351–31,359 (1999). [CrossRef]
  12. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  13. J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970). [CrossRef]
  14. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  15. S. E. Bisson, J. E. M. Goldsmith, M. G. Mitchell, “Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements,” Appl. Opt. 38, 1841–1849 (1999). [CrossRef]
  16. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  17. R. T. H. Collis, P. B. Russel, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinckley, ed. (Springer-Verlag, Berlin, 1976), p. 140.
  18. J. Bosenberg, “Ground-based differential absorption lidar for water-vapor profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  19. T. M. Weckwerth, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, R. M. Banta, “NCAR–NOAA lower-tropospheric water vapor workshop,” Bull. Am. Meteorol. Soc. 80, 2339–2357 (1999). [CrossRef]
  20. D. Bruneau, P. Quaglia, C. Flamant, J. Pelon, “The airborne lidar LEANDRE II for water vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001). [CrossRef]
  21. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989). [CrossRef] [PubMed]
  22. J. Pelon, P. Flamant, G. Mégie, M. Meissonnier, “The LEANDRE project: a French airborne lidar system for meteorological studies,” in Proceedings of the Fourteenth International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds, (Istituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Florence, Italy, 1988), pp. 197–200.
  23. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991). [CrossRef] [PubMed]
  24. O. Blanchard, “Conception et développement d’un mesureur de longueur d’onde haute résolution pour des expériences lidar embarquées sur avion,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1990).
  25. C. Cahen, J.-P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multiple beam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–359 (1981). [CrossRef]
  26. K. Kinosita, “Numerical evaluation of the intensity curve of a Fizeau fringe,” J. Phys. Soc. Jpn. 8, 249–255 (1953).
  27. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986). [CrossRef]
  28. C. Cahen, B. E. Grossmann, J. L. Lesne, J. Benard, G. Leboudec, “Intensities and atmospheric broadening coefficients measured for O2 and H2O absorption lines selected for DIAL monitoring of both temperature and humidity. 2. H2O,” Appl. Opt. 25, 4268–4271 (1986). [CrossRef]
  29. B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989). [CrossRef]
  30. B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  31. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  32. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).
  33. D. Bruneau, T. Arnaud des Lions, P. Quaglia, J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited