Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description

Not Accessible

Your library or personal account may give you access

Abstract

The airborne differential absorption lidar LEANDRE II, developed for profiling tropospheric water-vapor mixing ratios, is described. The emitter is a flash-lamp-pumped alexandrite laser, which operates in a double-pulse, dual-wavelength mode in the 727–736 nm spectral domain. Two 50-mJ successive on-line and off-line pulses with an output linewidth of 2.4 × 10-2 cm-1 and a spectral purity larger than 99.99% are emitted at a 50-µs time interval. The spectral positioning is controlled in real time by a wavemeter with an absolute accuracy of 5 × 10-3 cm-1. The receiver is a 30-cm aperture telescope with a 3.5-mrad field of view and a 1-nm filter bandwidth. These instrument characteristics are defined for measuring the water-vapor mixing ratio with an accuracy better than 0.5 g kg-1 in the first 5 km of the atmosphere with a range resolution of 300 m, integration on 100 shots, and an instrumental systematic error of less than 2%. The sensitivity study and first results are presented in part II [Appl. Opt. 40, 3462–3475 (2001)].

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results

Didier Bruneau, Philippe Quaglia, Cyrille Flamant, and Jacques Pelon
Appl. Opt. 40(21) 3462-3475 (2001)

Airborne remote sensing of tropospheric water vapor with a near–infrared differential absorption lidar system

G. Ehret, C. Kiemle, W. Renger, and G. Simmet
Appl. Opt. 32(24) 4534-4551 (1993)

Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J. Allen, Alene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, and Arlen F. Carter
Appl. Opt. 33(27) 6422-6438 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved