OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3476–3482

Repetitive genetic inversion of optical extinction data

Barry R. Lienert, John N. Porter, and Shiv K. Sharma  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3476-3482 (2001)
http://dx.doi.org/10.1364/AO.40.003476


View Full Text Article

Acrobat PDF (137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a genetic method of deriving aerosol size distributions from multiwavelength extinction measurements. The genetic inversion searches for log-normal size distribution parameters whose calculated extinctions best fit the data. By repetitively applying the genetic inversion using different random number seeds, we are able to generate multiple solutions that fit the data equally well. When these solutions are similar, they lend confidence to an interpretation, whereas when they vary widely, they demonstrate nonuniqueness. In this way we show that, even in the case of a single log-normal distribution, many different distributions can fit the same set of extinction data unless the misfit is reduced below typical measurement error levels. In the case of a bimodal distribution, we find many dissimilar size distributions that fit the data to within 1% at six wavelengths. To recover the original bimodal distribution satisfactorily, we found that extinctions at ten wavelengths must be fitted to within 0.5%. Our results imply that many size distributions recovered from existing extinction measurements can be highly nonunique and should be treated with caution.

© 2001 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.3640) Atmospheric and oceanic optics : Lidar

Citation
Barry R. Lienert, John N. Porter, and Shiv K. Sharma, "Repetitive genetic inversion of optical extinction data," Appl. Opt. 40, 3476-3482 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3476


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
  2. G. P. Box, K. M. Sealy, and M. A. Box, “Inversion of Mie extinction measurements using analytic eigenfunction theory,” J. Atmos. Sci. 49, 2074–2081 (1989).
  3. D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997).
  4. E. R. Westwater and A. Cohen, “Application of Backus–Gilbert inversion technique to determination of aerosol size distributions from optical scattering measurements,” Appl. Opt. 12, 1340–1348 (1973).
  5. D. J. Carroll, “Chemical laser modeling with genetic algorithms,” AIAA J. 34, 338–346 (1996).
  6. M. D. King, D. M. Byrne, B. M. Herman, and J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
  7. C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–25 (1961).
  8. O. Dubovik and M. D. King, “A flexible algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
  9. M. Kalos and P. Whitlock, Monte Carlo Methods (Wiley InterScience, New York, 1986).
  10. M. Sambridge, “Geophysical inversion with a neighbourhood algorithm. I. Searching a parameter space,” Geophys. J. Int. 138, 479–494 (1999).
  11. J. Besag, P. J. Green, D. Higdon, and K. Mengersen, “Bayesian computation and stochastic systems,” Stat. Sci. 10, 3–66 (1995).
  12. J. E. Gentile, Random Number Generation and Monte Carlo Methods (Springer-Verlag, New York, 1998).
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  14. J. H. Holland, Adaptation in Artificial and Natural Systems (University of Michigan, Ann Arbor, Mich., 1975).
  15. D. E. Goldberg and M. P. Samtani, “Engineering optimization via genetic algorithm,” in Proceedings of the Ninth Conference on Electronic Computation, American Society of Civil Engineers, Birmingham, Ala., 1986), pp. 471–482.
  16. S. Kirkpatrick, Jr., C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
  17. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodel functions of continuous variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262–280 (1987).
  18. K. T. Whitby, “The physical characteristics of sulfur aerosols,” Atmos. Environ. 12, 135–159 (1978).
  19. P. K. Quinn, D. S. Covert, T. S. Bates, V. N. Kapustin, D. C. Ramsey-Bell, and L. M. Melnnes, “Dimethylsulfide/cloud condensation nuclei/climate system: relevant size-resolved measurements of the chemical and physical properties of atmospheric aerosol particles,” J. Geophys. Res. 98, 10411–10427 (1993).
  20. J. N. Porter and A. D. Clarke, “Aerosol size distribution models based on in situ measurements,” J. Geophys. Res. 102, 6035–6045 (1997).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  23. M. J. Post, “A graphical technique for retrieving size distribution parameters from multiple measurements: visualization and error analysis,” J. Atmos. Oceanic Technol. 13, 865–873 (1996).
  24. B. R. Lienert, E. Berg, and L. N. Frazer, “HYPOCENTER: an earthquake location method using centered, scaled and adaptively damped least squares,” Bull. Seismol. Soc. Am. 76, 771–783 (1986).
  25. M. J. Post, “Limitations of cloud droplet size distribution by Backus–Gilbert inversion of optical scattering data,” J. Opt. Soc. Am. 66, 483–486 (1976).
  26. J. N. Porter, M. Miller, C. Pietras, and C. Motell, “Ship-based sun photometer measurements using Microtops sun photometers,” J. Atmos. Oceanic Technol. 18, 765–774 (2001).
  27. G. E. Shaw, “Sun photometry,” Bull. Am. Meteorol. Soc. 64, 4–11 (1983).
  28. G. Backus and F. Gilbert, “The resolving power of gross earth data,” Geophys. J. R. Astron. Soc. 266, 169–205 (1969).
  29. D. D. Jackson, “Interpretation of inaccurate, insufficient and inconsistent data,” Geophys. J. R. Astron. Soc. 28, 97–109 (1972).
  30. H. G. Jorge and J. A. Ogren, “Sensitivity of retrieved aerosol properties to assumptions in the inversion of spectral optical depths,” J. Atmos. Sci. 53, 3669–3683 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited