OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3483–3494

Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm

Bruce C. Kindel, Zheng Qu, and Alexander F. H. Goetz  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3483-3494 (2001)
http://dx.doi.org/10.1364/AO.40.003483


View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radiometrically stable, commercially available spectroradiometer was used in conjunction with a simple, custom-designed telescope to make spectrally continuous measurements of solar spectral transmittance and directly transmitted solar spectral irradiance. The wavelength range of the instrument is 350–2500 nm and the resolution is 3–11.7 nm. Laboratory radiometric calibrations show the instrument to be stable to better than 1.0% over a nine-month period. The instrument and telescope are highly portable, can be set up in a matter of minutes, and can be operated by one person. A method of absolute radiometric calibration that can be tied to published top-of-the-atmosphere (TOA) solar spectra in valid Langley channels as well as regions of strong molecular absorption is also presented. High-altitude Langley plot calibration experiments indicate that this technique is limited ultimately by the current uncertainties in the TOA solar spectra, approximately 2–3%. Example comparisons of measured and modtran-modeled direct solar irradiance show that the model can be parameterized to agree with measurements over the large majority of the wavelength range to the 3% level for the two example cases shown. Side-by-side comparisons with a filter-based solar radiometer are in excellent agreement, with a mean absolute difference of τ = 0.0036 for eight overlapping wavelengths over three experiment days.

© 2001 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(300.6190) Spectroscopy : Spectrometers

History
Original Manuscript: November 28, 2000
Revised Manuscript: April 11, 2001
Published: July 20, 2001

Citation
Bruce C. Kindel, Zheng Qu, and Alexander F. H. Goetz, "Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm," Appl. Opt. 40, 3483-3494 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. L. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. 26, 1715–1718 (1999). [CrossRef]
  2. M. Sicard, K. J. Thome, B. G. Crowther, M. W. Smith, “Shortwave infrared spectroradiometer for atmospheric transmittance measurements,” J. Atmos. Oceanic Technol. 15, 174–183 (1998). [CrossRef]
  3. P. Pilewskie, A. F. H. Goetz, D. A. Beal, R. W. Bergstrom, P. Mariani, “Observations of the spectral distribution of solar irradiance at the ground during SUCCESS,” Geophys. Res. Lett. 25, 1141–1144 (1998). [CrossRef]
  4. Y. J. Kaufman, D. D. Herring, K. J. Ranson, G. J. Collatz, “Earth Observing System AM1 mission to earth,” IEEE Trans. Geosci. Remote Sens. 36, 1045–1055 (1998). [CrossRef]
  5. S. N. Goward, D. L. Williams, “Landsat and Earth systems science: development of terrestrial monitoring,” Photogramm. Eng. Remote Sens. 63, 887–900 (1997).
  6. S. G. Ungar, “Technologies for furture Landsat missions,” Photogramm. Eng. Remote Sens. 63, 901–905 (1997).
  7. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  8. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharaya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, S. A. Clough, “The MODTRAN 2/3 report and the LOWTRAN 7 model,” (Geophysics Directorate, Phillips Laboratory, 29 Randolph Road, Hanscom Air Force Base, Mass., 1996).
  9. Analytical Spectral Devices Inc., “FieldSpec user’s guide,” (Boulder, Colo., 1996).
  10. Optronic Laboratories Inc., “Instructions for the Optronics Laboratories 1000-W FEL tungsten-halogen lamp standards of total and spectral irradiance” (Orlando, Fla., 1995).
  11. R. D. Jackson, T. R. Clarke, M. S. Moran, “Bidirectional calibration results for 11 Spectralon and 16 BaSO4 reference reflectance panels,” Remote Sens. Environ. 40, 231–239 (1992). [CrossRef]
  12. A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993). [CrossRef]
  13. K.-N. Liou, An Introduction to Atmospheric Radiation (Academic, New York, 1980).
  14. J. A. Reagan, K. Thome, B. Herman, R. Gall, “Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications,” presented at the IGARSS ’87 Symposium, Ann Arbor, Mich., 18–21 May 1987.
  15. C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97, 18743–18758 (1992). [CrossRef]
  16. B. Schmid, C. Wehrli, “Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp,” Appl. Opt. 34, 4500–4512 (1995). [CrossRef] [PubMed]
  17. P. W. Kiedron, J. J. Michalsky, J. L. Berndt, L. C. Harrison, “Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers,” Appl. Opt. 38, 2432–2439 (1999). [CrossRef]
  18. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  19. L. P. Giver, C. Chackerian, P. Varanasi, “Visible and near-infrared H2O line intensity corrections for HITRAN96,” J. Quant. Spectroscoc. Radiat. Transfer 66, 101–105 (2000). [CrossRef]
  20. R. L. Kurucz, “Solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, PL-TR-95-2060, G. P. Anderson, R. H. Picard, J. H. Chetwynd, eds. (Directorate of Geophysics, Phillips Laboratory, Hanscom Air Force Base, Mass., 1995), pp. 333–334.
  21. G. Thuillier, M. Herse, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, T. Foujols, “The visible solar spectral irradiance from 350 to 850nm as measured by the SOLSPEC spectrometer during the Atlas I mission,” Sol. Phys. 177, 41–61 (1998). [CrossRef]
  22. B. Schmid, P. R. Spyak, S. F. Biggar, C. Wehrli, J. Sekler, T. Ingold, C. Matzler, N. Kampfer, “Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm,” Appl. Opt. 37, 3923–3941 (1998). [CrossRef]
  23. A. R. Ehansi, J. A. Reagan, W. H. Erxleben, “Design and performance analysis of an automated 10-channel solar radiometer instrument,” J. Atmos. Oceanic Technol. 15, 697–707 (1998). [CrossRef]
  24. F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989). [CrossRef] [PubMed]
  25. J. Reagan, K. Thome, B. Herman, R. Stone, J. Deluisi, J. Snider, “A comparison of columnar water vapor retrievals obtained with near-IR solar radiometer and microwave radiometer measurements,” J. Appl. Meteorol. 34, 1384–1391 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited