OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 21 — Jul. 20, 2001
  • pp: 3552–3558

High-density Er-implanted GaN optical memory devices

Boon K. Lee, Robert Chih-Jen Chi, David Liang-Chiun Chao, Ji Cheng, Irving Yeong-Ning Chry, Fred R. Beyette, Jr., and Andrew J. Steckl  »View Author Affiliations


Applied Optics, Vol. 40, Issue 21, pp. 3552-3558 (2001)
http://dx.doi.org/10.1364/AO.40.003552


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Upconversion emission has been obtained from Er-focused ion-beam (FIB) implanted GaN. Visible green emission at the 522- and 546-nm range were excited with infrared (IR) laser sources at either 840 or 1000 nm, or with both lasers simultaneously. By implanting closely spaced patterns with the FIB, we demonstrated the concept of storing data in Er-implanted GaN. Information stored as data bits consists of patterns of implanted locations as logic 1 and unimplanted locations as logic 0. The photon upconversion process in Er ions is utilized to read the stored information. This process makes use of the IR lasers to excite visible emission. The integrated upconversion emission power was measured to be ∼40 pW when pumped by a 840-nm laser at 265 mW and by a 1000-nm laser at 208 mW. Patterns as small as 0.5 µm were implanted and read. Three-dimensional optical memory based on rare-earth-doped semiconductors could in theory approach a storage capacity of 1012 bits/cm3.

© 2001 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories
(230.4000) Optical devices : Microstructure fabrication
(260.3800) Physical optics : Luminescence

History
Original Manuscript: September 19, 2000
Revised Manuscript: February 27, 2001
Published: July 20, 2001

Citation
Boon K. Lee, Robert Chih-Jen Chi, David Liang-Chiun Chao, Ji Cheng, Irving Yeong-Ning Chry, Fred R. Beyette, and Andrew J. Steckl, "High-density Er-implanted GaN optical memory devices," Appl. Opt. 40, 3552-3558 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-21-3552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner, M. Mansuripur, D. A. Thompson, The Future of Data Storage Technologies (World Technology Division, International Technology Research Institute, Loyola College, Baltimore, Md., 1999), Chap. 1; http://itri.loyola.edu/hdmen/toc.htm .
  2. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). [CrossRef]
  4. S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990). [CrossRef]
  5. K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998). [CrossRef]
  6. M. E. Marhic, “Storage limit of two-photon-based three-dimensional memories with parallel access,” Opt. Lett. 16, 1272–1273 (1991). [CrossRef] [PubMed]
  7. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990). [CrossRef] [PubMed]
  8. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991). [CrossRef] [PubMed]
  9. D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998). [CrossRef]
  10. H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999). [CrossRef]
  11. T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999). [CrossRef]
  12. P. J. Van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963). [CrossRef]
  13. G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995). [CrossRef]
  14. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  15. K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992). [CrossRef]
  16. J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994). [CrossRef]
  17. J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998). [CrossRef]
  18. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996). [CrossRef]
  19. F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).
  20. M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995). [CrossRef]
  21. J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995). [CrossRef]
  22. I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998). [CrossRef]
  23. E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999). [CrossRef]
  24. S. Jutamulia, G. M. Storti, J. Lindmayer, W. Seiderman, “Use of electron trapping materials in optical signal processing. 2: Two-dimensional associative memory,” Appl. Opt. 30, 2879–2884 (1991). [CrossRef] [PubMed]
  25. S. Kroll, P. Tidlund, “Recording density limit of photon-echo optical storage with high-speed writing and reading,” Appl. Opt. 32, 7233–7242 (1993). [CrossRef] [PubMed]
  26. E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995). [CrossRef] [PubMed]
  27. B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998). [CrossRef]
  28. A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).
  29. A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).
  30. L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999). [CrossRef]
  31. L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999). [CrossRef]
  32. L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited