OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 22 — Aug. 1, 2001
  • pp: 3659–3667

Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry

Lynn L. Deibler and Matthew H. Smith  »View Author Affiliations

Applied Optics, Vol. 40, Issue 22, pp. 3659-3667 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The complex refractive index of materials at infrared wavelengths is often determined when absorption measurements are made at selected wavelengths, and then the Kramers–Kronig relationship is used to calculate the real part of the index. Because many organic materials are highly absorbing in the infrared, absorption measurements require a short path length. We report on the use of an attenuated total internal reflection (TIR) method in combination with an infrared Mueller matrix spectropolarimeter to measure the Mueller matrix spectrum of samples from 3 to 14 µm. From the elements of the Mueller matrix the complex refractive index is determined for materials whose TIR interfaces are eigenstates of s and p polarization. The calculated index for water compares well with data found in the literature.

© 2001 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

Original Manuscript: January 16, 2001
Revised Manuscript: May 7, 2001
Published: August 1, 2001

Lynn L. Deibler and Matthew H. Smith, "Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry," Appl. Opt. 40, 3659-3667 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Chittur, “FTIR/ATR for protein adsorption to biomaterial surfaces,” Biomaterials 19, 357–369 (1998). [CrossRef] [PubMed]
  2. N. J. Harrick, Internal Reflection Spectroscopy, 1st ed. (Interscience, New York, 1967).
  3. R. M. A. Azzam, “Differential reflection phase shift under conditions of attenuated internal reflection,” J. Opt. Soc. Am. 16, 1700–1702 (1999). [CrossRef]
  4. R. M. A. Azzam, “Correlation of Fresnel’s interface reflection coefficients of external and internal reflection at the same angle of incidence for dielectric-dielectric interfaces,” in Polarization: Measurement, Analysis and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 88–98 (1999).
  5. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef] [PubMed]
  6. D. B. Chenault, R. A. Chipman, “Infrared achromatic retarder,” U.S. patent4,961,634 (9Oct.1990).
  7. D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993). [CrossRef] [PubMed]
  8. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  9. D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 7, 693–700 (1990). [CrossRef]
  10. W. N. Hansen, “Expanded formulas of attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells,” Spectrochim. Acta 21, 815–833 (1965). [CrossRef]
  11. D. J. Ahn, E. I. Franses, “Orientations of chain axes and transition moments in Langmuir-Blodgett mono-layers determined by polarized FTIR-ATR spectroscopy,” J. Phys. Chem. 96, 9952–9958 (1992). [CrossRef]
  12. E. Collett, Polarized Light, Fundamentals and Applications (Marcel Decker, New York, 1992).
  13. T. W. Nee, S. M. F. Nee, “Infrared polarization signatures for targets,” in Targets and Backgrounds: Characterization and Representation, W. R. Watkins, D. Clement, eds., Proc. SPIE2469, 231–241 (1995). [CrossRef]
  14. W. J. Tropf, M. E. Thomas, T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 33, Table 22.
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  16. L. L. Deibler, “Infrared polarimetry using attenuated total reflection,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 2001).
  17. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).
  18. D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. SPIE1746, 231–246 (1992). [CrossRef]
  19. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–562 (1973). [CrossRef] [PubMed]
  20. E. A. Sornsin, R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” in Polarization: Measurement, Analysis, and Remote Sensing, D. H. Goldstein, R. A. Chipman, eds., Proc. SPIE3121, 28–34 (1997).
  21. P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66(3), 227–253 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited