OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 23 — Aug. 10, 2001
  • pp: 3831–3842

Simultaneous multiwavelength real-time optical spectrum analysis

José Azaña and Miguel A. Muriel  »View Author Affiliations

Applied Optics, Vol. 40, Issue 23, pp. 3831-3842 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a technique for performing a real-time Fourier transformation simultaneously over all the channels of a multiwavelength signal traveling in a single optical fiber. The technique requires only the reflection of the original signal in an appropriately designed structure of superimposed chirped fiber gratings. The potential and the limitations of superimposed fiber-grating structures for implementing known applications of fiber gratings over various multiwavelength channels (including the application proposed herein) are analytically and numerically studied. To demonstrate our proposal we design a real-time optical spectrum analyzer operating on three different wavelength channels. Numerical calculations show that the design works properly, and we use joint time–frequency signal representations to get a better understanding of the physical processes that determine the behavior of the system.

© 2001 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(260.2030) Physical optics : Dispersion

Original Manuscript: June 27, 2000
Revised Manuscript: December 19, 2000
Published: August 10, 2001

José Azaña and Miguel A. Muriel, "Simultaneous multiwavelength real-time optical spectrum analysis," Appl. Opt. 40, 3831-3842 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  2. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8, 232–234 (1983). [CrossRef] [PubMed]
  3. Y. C. Tong, L. Y. Chan, K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997). [CrossRef]
  4. H. Hakimi, F. Hakimi, K. L. Hall, K. A. Rauschenbach, “A new wide-band pulse-restoration technique for digital fiber-optic communication systems using temporal gratings,” IEEE Photon. Technol. Lett. 11, 1048–1050 (1999). [CrossRef]
  5. K. L. Hall, D. T. Moriarty, H. Hakimi, F. Hakimi, B. S. Robinson, K. A. Rauschenbach, “An ultrafast variable optical delay technique,” IEEE Photon. Technol. Lett. 12, 208–210 (2000). [CrossRef]
  6. M. A. Muriel, J. Azaña, A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999). [CrossRef]
  7. J. Azaña, L. R. Chen, M. A. Muriel, P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett. 35, 2223–2224 (1999). [CrossRef]
  8. J. Azaña, M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000). [CrossRef]
  9. B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). [CrossRef]
  10. M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997). [CrossRef]
  11. J. Azaña, M. A. Muriel, “Superimposed in-fiber grating structures for optical signal processing in wavelength-division-multiplexing systems,” in OFC’2000 (25th Conference on Optical Fiber Communication, T. Li, ed., Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 233–235, paper WM8.
  12. A. Othonos, X. Lee, R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972–1974 (1994). [CrossRef]
  13. L. Zhang, K. Sugden, I. Bennion, A. Molony, “Wide-stopband chirped fibre moiré grating transmission filters,” Electron. Lett. 31, 477–479 (1995). [CrossRef]
  14. L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thoms, R. M. Rue, “Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method,” Opt. Lett. 22, 1473–1475 (1997). [CrossRef]
  15. L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped moiré gratings,” Electron. Lett. 35, 584–585 (1999). [CrossRef]
  16. M. Ibsen, M. K. Durkin, R. I. Laming, “Chirped moiré fiber gratings operating on two-wavelength channels for use as dual-channel dispersion compensators,” IEEE Photon. Technol. Lett. 10, 84–86 (1998). [CrossRef]
  17. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  18. F. Oullette, J.-F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994). [CrossRef]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  20. M. A. Muriel, A. Carballar, J. Azaña, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35, 548–558 (1999). [CrossRef]
  21. D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Martí, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996). [CrossRef]
  22. K. Ennser, M. N. Zervas, R. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998). [CrossRef]
  23. K. Ennser, R. I. Laming, M. N. Zervas, M. Ibsen, M. Durkin, “Effects of non-ideal group delay and reflection characteristics of fibre grating dispersion compensators,” in Proceedings of the 23rd European Conference on Optical Communications, 1997 (ECOC’97) (Institute of Electrical Engineers, London, 1977), Vol. 2, pp. 45–48.
  24. L. Cohen, Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited