OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 23 — Aug. 10, 2001
  • pp: 3932–3936

Two-photon-excitation spatial distribution for crossed focused Gaussian beams

Vladimir K. Makukha and Yury P. Meshalkin  »View Author Affiliations

Applied Optics, Vol. 40, Issue 23, pp. 3932-3936 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial distribution of two-photon excitation created by crossed focused Gaussian beams is shown. The effective volume calculation for the two-photon interaction of crossed Gaussian beams is presented. The dimensions of cubic and parallelepiped volumes, in which half of the two-photon interaction is localized, are determined. The memory densities of two-photon three-dimensional memory for crossed focused beams and one focused beam are compared.

© 2001 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(190.4180) Nonlinear optics : Multiphoton processes
(210.4680) Optical data storage : Optical memories
(220.2560) Optical design and fabrication : Propagating methods

Original Manuscript: February 13, 2001
Published: August 10, 2001

Vladimir K. Makukha and Yury P. Meshalkin, "Two-photon-excitation spatial distribution for crossed focused Gaussian beams," Appl. Opt. 40, 3932-3936 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  2. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990). [CrossRef] [PubMed]
  3. N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997). [CrossRef]
  4. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997). [CrossRef]
  5. E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).
  6. T. Tanaka, S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996). [CrossRef]
  7. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998). [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  9. G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999). [CrossRef] [PubMed]
  10. R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975). [CrossRef]
  11. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited