OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 3969–3983

Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus

Watt W. Webb  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 3969-3983 (2001)
http://dx.doi.org/10.1364/AO.40.003969


View Full Text Article

Enhanced HTML    Acrobat PDF (1156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence correlation spectroscopy examines the chemical and the photophysical dynamics of dilute molecular solutions by measurement of the dynamic optical fluctuations of the fluorescence of a few molecules, even averaging less than one molecule at a time, in open focal volumes that are usually less than a femtoliter (<10-18 m3). It applies the same principles of statistical thermodynamics as does quasi-elastic light scattering. Molecular interactions, conformational changes, chemical reactions, and photophysical dynamics that are not ordinarily detectable by quasi-elastic light scattering can be analyzed by fluorescence correlation spectroscopy in cases in which molecular fluorescence changes in the dynamic range 10-7–102 s.

© 2001 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(170.1580) Medical optics and biotechnology : Chemometrics
(180.0180) Microscopy : Microscopy
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: January 31, 2001
Revised Manuscript: April 26, 2001
Published: August 20, 2001

Citation
Watt W. Webb, "Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus," Appl. Opt. 40, 3969-3983 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-3969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Tyndall, “Scientific materialism,” in Fragments of Science, A Series of Detached Essays, Addresses and Reviews (Longmans, Green, London, 1892), Vol. 2, p. 77.
  2. D. Magde, E. Elson, W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurements by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972). [CrossRef]
  3. E. L. Elson, D. Magde, “Fluorescence correlation spectroscopy I. conceptual basis and theory,” Biopolymers 13, 1–27 (1974). [CrossRef]
  4. D. Magde, E. L. Elson, W. W. Webb, “Fluorescence correlation spectroscopy II. An experimental realization,” Biopolymers 13, 29–61 (1974). [CrossRef] [PubMed]
  5. W. W. Webb, “Fluorescence correlation spectroscopy: genesis, evolution, maturation and prognosis,” in Fluorescence Correlation Spectroscopy, R. Rigler, E. Elson, eds. (Springer-Verlag, Berlin, 2001), Chap. 14, pp. 305–330. [CrossRef]
  6. G. H. Gilmer, W. C. Gilmore, J. S. Huang, W. W. Webb, “Diffuse interface in a critical fluid mixture,” Phys. Rev. Lett. 14, 491–494 (1965). [CrossRef]
  7. J. S. Huang, W. W. Webb, “Diffuse interface in a critical fluid mixture,” J. Chem. Phys. 50, 3677–3693 (1969). [CrossRef]
  8. J. S. Huang, W. W. Webb, “Viscous damping of thermal excitations on the interface of critical fluid mixtures,” Phys. Rev. Lett. 23, 160–163 (1969). [CrossRef]
  9. R. Beasley, W. A. Fietz, R. W. Rollins, J. Silcox, W. W. Webb, “Annihilation instability in hard superconductors,” Phys. Rev. A 137, 1205–1208 (1965). [CrossRef]
  10. W. W. Webb, R. J. Warburton, “Intrinsic quantum fluctuations in uniform filamentary superconductors,” Phys. Rev. Lett. 30, 461–465 (1968). [CrossRef]
  11. J. E. Lukens, R. J. Warburton, W. W. Webb, “Onset of quantized thermal fluctuations in ‘one-dimensional’ superconductors,” Phys. Rev. Lett. 25, 1180–1184 (1970). [CrossRef]
  12. R. Beasley, R. Labusch, W. W. Webb, “Flux creep in type-II superconductors,” Phys. Rev. 181, 682–700 (1969). [CrossRef]
  13. W. H. Henkels, W. W. Webb, “Intrinsic fluctuations in the driven Josephson oscillator,” Phys. Rev. Lett. 26, 1164–1167 (1971). [CrossRef]
  14. P. Leiderer, D. R. Watts, W. W. Webb, “Light scattering by 3He–4He mixtures near the tricritical point,” Phys. Rev. Lett. 33, 483–485 (1974). [CrossRef]
  15. P. Leiderer, D. R. Nelson, D. R. Watts, W. W. Webb, “Tricritical slowing down of superfluid dynamics in 3He–4He mixtures,” Phys. Rev. Lett. 34, 1080–1083 (1975). [CrossRef]
  16. B. Widom, M. Fisher, V. Ambegaokor, J. Langer, J. Wilkens, M. Nelkin, K. Wilson, and their students, Cornell University, Ithaca, N.Y. (personal communication, 1970).
  17. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  18. S. R. DeGroot, Thermodynamics of Irreversible Processes (North-Holland, Amsterdam, 1952).
  19. D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, A216 (1976). [CrossRef]
  20. J. Mertz, C. Xu, W. W. Webb, “Single-molecule detection by two-photon excited fluorescence,” Opt. Lett. 20, 2532–2534 (1995). [CrossRef]
  21. S. Maiti, U. Haupts, W. W. Webb, “Fluorescence correlation spectroscopy: diagnostics for sparse molecules,” Proc. Natl. Acad. Sci. USA 94, 11753–11757 (1997). [CrossRef] [PubMed]
  22. P. Schwille, U. Haupts, S. Maiti, W. W. Webb, “Molecular dynamics of living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999). [CrossRef] [PubMed]
  23. C. Xu, W. W. Webb, “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” in Topics in Fluorescence Spectroscopy: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, ed. (Plenum, N.Y., 1997), Vol. 5, pp. 471–540. [CrossRef]
  24. E. L. Elson, W. W. Webb, “Concentration correlation spectroscopy: a new biophysical probe based on occupation number fluctuations,” Ann. Rev. Biophys. Bioeng. 4, 311–334 (1975). [CrossRef]
  25. W. W. Webb, “Applications of fluorescence correlation spectroscopy,” Quart. Rev. Biophys. 9, 49–68 (1976). [CrossRef]
  26. A. Ehrenberg, R. Rigler, “Rotational Brownian-motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
  27. R. D. Icenogle, E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements,” Biopolymers 22, 1919–1948 (1983). [CrossRef] [PubMed]
  28. R. D. Icenogle, E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations,” Biopolymers 22, 1949–1966 (1983). [CrossRef] [PubMed]
  29. T. A. Ryan, J. Myers, D. Holowka, B. Baird, W. W. Webb, “Molecular crowding on the cell surface,” Science 239, 61–64 (1988). [CrossRef] [PubMed]
  30. T. Ryan, J. Myers, W. W. Webb, “Molecular interactions on the cell surface revealed by electrophoresis,” Biol. Bull. 176(S), 164–169 (1989).
  31. D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974). [CrossRef]
  32. D. R. Sandison, D. W. Piston, R. M. Williams, W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, 3576–3588 (1995). [CrossRef] [PubMed]
  33. H. Qian, “On the statistics of fluorescence correlation spectroscopy,” Biophys. Chem. 38(1-2), 49–57 (1990). [PubMed]
  34. H. Qian, E. L. Elson, “Analysis of confocal laser–microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30, 1185–1195 (1991). [CrossRef] [PubMed]
  35. N. L. Thompson, “Fluorescence correlation spectroscopy,” in Topics in Fluorescence Spectroscopy VI, J. R. Lakowicz, ed. (Plenum, New York, 1991), pp. 337–338.
  36. N. O. Peterson, D. C. Johnson, M. J. Schlessinger, “Scanning fluorescence correlation spectroscopy. 2. Application to virus glycoprotein aggregation,” Biophys. J. 49, 817–820 (1986). [CrossRef]
  37. M. Eigen, R. Rigler, “Sorting single molecules—application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994). [CrossRef]
  38. L. S. Barak, W. W. Webb, “Diffusion of low density lipoprotein–receptor complex on human fibroblasts,” J. Cell Biol. 95, 846–852 (1982). [CrossRef] [PubMed]
  39. D. W. Tank, W. J. Fredericks, L. S. Barak, W. W. Webb, “Electric field-induced redistribution and postfield relaxation of low density lipoprotein receptors on cultured human fibroblasts,” J. Cell Biol. 101, 148–157 (1985). [CrossRef] [PubMed]
  40. D. Gross, W. W. Webb, “Cell surface clustering and mobility of the liganded LDL receptor measured by digital video fluorescence microscopy,” in Spectroscopic Membrane Probes, L. M. Loew, ed. (CRC Press, Boca Raton, Fla., 1988), Vol. II, pp. 19–43.
  41. D. Gross, W. W. Webb, “Molecular counting of low-density lipoprotein particles as individuals and small clusters on cell surfaces,” Biophys. J. 49, 901–911 (1986). [CrossRef] [PubMed]
  42. R. N. Ghosh, W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J. 66, 1301–1318 (1994). [CrossRef] [PubMed]
  43. T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, W. W. Webb, “Constrained diffusion or immobile fraction on the cell surfaces: a new interpretation,” Biophys. J. 70, 2767–2773 (1996). [CrossRef] [PubMed]
  44. E. Brown, E. Wu, W. Zipfel, W. W. Webb, “Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery,” Biophys. J. 77, 2837–2849 (1999). [CrossRef] [PubMed]
  45. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  46. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997). [CrossRef] [PubMed]
  47. P. Kloppenburg, W. R. Zipfel, W. W. Webb, R. M. Harris-Warrick, “Highly localized Ca2+ accumulation revealed by multiphoton microscopy in an identified motoneuron, and its modulation by dopamine,” J. Neurosci. 20, 2523–2533 (2000). [PubMed]
  48. W. Denk, W. W. Webb, “Thermal-noise-limited transduction observed in mechanosensory receptors of the inner ear,” Phys. Rev. Lett. 63, 207–210 (1989). [CrossRef] [PubMed]
  49. W. Denk, W. W. Webb, A. J. Hudspeth, “Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer,” Proc. Natl. Acad. Sci. USA 86, 5371–5375 (1989). [CrossRef] [PubMed]
  50. W. Denk, W. W. Webb, “Optical measurement of picometer displacements of transparent, microscopic objects,” Appl. Opt. 29, 2382–2391 (1990). [CrossRef] [PubMed]
  51. W. Denk, R. M. Keolian, W. W. Webb, “Mechanical response of frog saccular hair bundles to the aminoglycoside block of mechano-electrical transduction,” J. Neurophysiol. 68, 927–932 (1992). [PubMed]
  52. D. W. Tank, R. L. Huganir, P. Greengard, W. W. Webb, “Patch-recorded single-channel currents of the purified and reconstituted torpedo acetylcholine receptor,” Proc. Natl. Acad. Sci. USA 80, 5129–5133 (1983). [CrossRef] [PubMed]
  53. D.-O. D. Mak, W. W. Webb, “Conductivity noise in transmembrane ion channels due to ion concentration fluctuations via diffusion,” Biophys. J. 72, 1153–1164 (1997). [CrossRef] [PubMed]
  54. D.-O. D. Mak, W. W. Webb, “Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis,” Biophys. J. 69, 2337–2349 (1995). [CrossRef] [PubMed]
  55. L. R. Opsahl, W. W. Webb, “Transduction of membrane tension by the ion channel alamethicin,” Biophys. J. 66, 71–74 (1994). [CrossRef] [PubMed]
  56. H. Qian, E. L. Elson, “Distribution of molecular aggregation by analysis of fluctuation moments,” Proc. Natl. Acad. Sci. USA 87, 5479–5483 (1990). [CrossRef] [PubMed]
  57. H. Qian, E. L. Elson, “On the analysis of high-order moments of fluorescence fluctuations,” Biophys. J. 57, 375–380 (1990). [CrossRef] [PubMed]
  58. P. Kask, K. Palo, D. Ullmann, K. Gall, “Fluorescence-intensity distribution analysis and its application in biomolecular detection technology,” Proc. Natl. Acad. Sci. USA 96, 13756–13761 (1999). [CrossRef] [PubMed]
  59. J. H. Scofield, W. W. Webb, “Resistance fluctuations due to hydrogen diffusion in niobium thin films,” Phys. Rev. Lett. 54, 353–356 (1985). [CrossRef] [PubMed]
  60. J. V. Mantese, W. W. Webb, “1/f noise of granular metal-insulator composites,” Phys. Rev. Lett. 55, 2212–2215 (1985). [CrossRef] [PubMed]
  61. J. V. Mantese, W. A. Curtin, W. W. Webb, “Two-component model for the resistivity and noise of tunneling metal-insulator composites,” Phys. Rev. B 33, 7897–7901 (1986). [CrossRef]
  62. N. M. Zimmerman, W. W. Webb, “1/f resistance noise complements anelasticity measurements of hydrogen motion in amorphous Pd80Si20,” Phys. Rev. Lett. 65, 1040–1043 (1990). [CrossRef] [PubMed]
  63. M. B. Schneider, J. T. Jenkins, W. W. Webb, “Thermal fluctuations of large cylindrical phospholipid vesicles,” Biophys. J. 45, 891–899 (1984). [CrossRef] [PubMed]
  64. M. B. Schneider, J. T. Jenkins, W. W. Webb, “Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles,” J. Phys. (Paris) 45, 1457–1472 (1984). [CrossRef]
  65. D. C. Wack, W. W. Webb, “Measurement by x-ray diffraction methods of the layer compressional elastic constant B in the lyotropic smectic-A (La) phase of the lecithin–water system,” Phys. Rev. A 40, 1627–1636 (1989). [CrossRef] [PubMed]
  66. M. B. Frish, W. W. Webb, “Direct measurement of vorticity by optical probe,” J. Fluid Mech. 107, 173–200 (1981). [CrossRef]
  67. D. Ferguson, W. W. Webb, “The vorticity optical probe: a fast multicomponent model,” in Proceedings of the Eighth Biennial Symposium on Turbulence, 26–28 September 1983, University of Missouri, Rolla, Missouri, pp. 272–281.
  68. R. H. Köhler, P. Schwille, W. W. Webb, M. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113, 3921–3930 (2000). [PubMed]
  69. J. Korlach, M. Levene, S. W. Turner, D. R. Larson, M. E. Foquet, H. G. Craighead, W. W. Webb, “A new method for sequencing individual molecules of DNA,” paper presented at the Sixth International Workshop on Single Molecule Detection and Ultra Sensitive Analysis in Life Sciences, Berlin, Germany (2000).
  70. J. Korlach, M. Levene, S. W. Turner, D. R. Larson, M. Foquet, H. G. Craighead, W. W. Webb, “A new strategy for sequencing individual molecules of DNA,” Biophys. J. 80, 147 (2001).
  71. A. A. Heikal, J. Korlach, W. W. Webb, “Time-resolved fluorescence and anisotropy of free and DNA-bound fluorescently labeled nucleotides,” Biophys. J. 80, 8 (2001).
  72. M. Levene, J. Korlach, S. W. Turner, H. G. Craighead, W. W. Webb, “Near-field apertures for reduced-volume fluorescence correlation spectroscopy and single molecule studies,” Biophys. J. 80, 149 (2001).
  73. S. T. Hess, A. A. Heikal, W. W. Webb, “Reversible light-assisted proton transfer reaction in ecliptic green fluorescent protein,” Biophys. J. 78, 75 (2000).
  74. M. Levene, D. Larson, J. Korlach, M. Foquet, S. W. Turner, H. G. Craighead, W. W. Webb, “Nanometer constrained observation volumes for high concentration fluorescence correlation spectroscopy and single molecule dynamics,” Biophys. J. 78, 2368 (2000).
  75. D. R. Larson, M. Levene, S. W. Turner, H. G. Craighead, W. W. Webb, “Fluorescence correlation spectroscopy in zeptoliter volumes,” Biophys. J. 80, 149 (2001).
  76. U. Haupts, S. Maiti, P. Schwille, W. W. Webb, “Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. USA 95, 13573–13578 (1998). [CrossRef] [PubMed]
  77. R. M. Dickson, A. B. Cubitt, R. Y. Tsien, W. E. Moerner, “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388(6840), 355–358 (1997).
  78. P. Schwille, S. Kummer, A. Heikal, W. E. Moerner, W. W. Webb, “Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins,” Proc. Natl. Acad. Sci. USA 97, 151–156 (2000). [CrossRef] [PubMed]
  79. D. A. DeAngelis, G. Miesenböch, B. V. Zemelman, J. E. Rothman, “PRIM: proximity imaging of green fluorescent protein-tagged polypeptides,” Proc. Natl. Acad. Sci. USA 95, 12312–12316 (1998). [CrossRef]
  80. A. A. Heikal, S. T. Hess, G. S. Baird, R. Y. Tsien, W. W. Webb, “Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine),” Proc. Natl. Acad. Sci. USA 97, 11996–12001 (2000). [CrossRef] [PubMed]
  81. P. F. Fahey, D. E. Koppel, L. S. Barak, D. E. Wolf, E. L. Elson, W. W. Webb, “Lateral diffusion in planar lipid bilayers,” Science 195(4275), 305–306 (1977).
  82. P. Schwille, J. Korlach, W. W. Webb, “Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes,” Cytometry 36, 176–182 (1999). [CrossRef] [PubMed]
  83. J. Korlach, P. Schwille, W. W. Webb, G. W. Feigenson, “Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. USA 96, 8461–8466 (1999). [CrossRef] [PubMed]
  84. C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 nm to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  85. M. Williams, D. W. Piston, W. W. Webb, “Two-photon molecular excitation provides intrinsic three-dimensional resolution for laser-based microscopy and microphotochemistry,” FASEB J. 8, 804–813 (1994). [PubMed]
  86. S. T. Hess, A. A. Heikal, G. S. Baird, R. Y. Tsien, W. W. Webb, “Advantageous molecular photophysical fluorescence properties of dsRed and Citrine,” Biophys. J. 80, 7 (2001).
  87. A. A. Heikal, S. T. Hess, P. Schwille, W. W. Webb, “Ultrafast molecular dynamics of selected green fluorescent protein mutants,” Biophys. J. 78, 752 (2000).
  88. P. Pyenta, P. Schwille, School of Applied and Engineering Physics, Cornell University, 233 Clark Hall, Ithaca, N.Y. 14853-0001 (personal communication, 1998).
  89. J. Thomas, W. W. Webb, “Fluorescence photobleaching recovery: a probe of membrane dynamics,” in Non-Invasive Techniques in Cell Biology, S. Grinstein, K. Foskett, eds. (Wiley, New York, 1990), pp. 129–152.
  90. M. Albota, D. Beljonne, J. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. Hess, T. Kogej, M. D. Levin, S. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998). [CrossRef] [PubMed]
  91. J. L. Thomas, D. Holowka, B. Baird, W. W. Webb, “Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins,” J. Cell Biol. 125, 795–802 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited