OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4152–4159

Three-Dimensional Confocal Microscopy of Colloids

A. D. Dinsmore, Eric R. Weeks, Vikram Prasad, Andrew C. Levitt, and D. A. Weitz  »View Author Affiliations

Applied Optics, Vol. 40, Issue 24, pp. 4152-4159 (2001)

View Full Text Article

Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Confocal microscopy is used in the study of colloidal gels, glasses, and binary fluids. We measure the three-dimensional positions of colloidal particles with a precision of approximately 50 nm (a small fraction of each particle’s radius) and with a time resolution sufficient for tracking the thermal motions of several thousand particles at once. This information allows us to characterize the structure and the dynamics of these materials in qualitatively new ways, for example, by quantifying the topology of chains and clusters of particles as well as by measuring the spatial correlations between particles with high mobilities. We describe our experimental technique and describe measurements that complement the results of light scattering.

© 2001 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2960) Imaging systems : Image analysis
(180.1790) Microscopy : Confocal microscopy

A. D. Dinsmore, Eric R. Weeks, Vikram Prasad, Andrew C. Levitt, and D. A. Weitz, "Three-Dimensional Confocal Microscopy of Colloids," Appl. Opt. 40, 4152-4159 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Wilson and B. R. Masters, “Confocal microscopy,” Appl. Opt. 33, 565–566 (1994).
  2. A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
  3. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
  4. M. H. Chestnut, “Confocal microscopy of colloids,” Curr. Opin. Colloid Interface Sci. 2, 158–161 (1997).
  5. W. K. Kegel and A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
  6. U. Dassanayake, S. Fraden, and A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
  7. K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
  8. A. van Blaaderen, “Imaging individual particles in concentrated colloidal dispersions by confocal scanning light microscopy,” Adv. Mater. 5, 52–54 (1993).
  9. N. A. M. Verhaegh, D. Asnaghi, and H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
  10. P. N. Pusey and W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
  11. W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, and P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).
  12. W. C. K. Poon, “Phase separation, aggregation and gelation in colloid–polymer mixtures and related systems,” Curr. Opin. Colloid Interface Sci. 3, 593–599 (1998).
  13. S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
  14. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
  15. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
  16. W. C. K. Poon, A. D. Pirie, and P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
  17. A. H. Krall and D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
  18. P. N. Segre, V. Prasad, A. B. Schofield, and D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
  19. P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
  20. R. Jullien and R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
  21. M. Lach-hab, A. E. Gonzalez, and E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
  22. M. Broide and R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
  23. D. A. Weitz and M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
  24. D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
  25. L. Cipelletti, S. Manley, R. C. Ball, and D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
  26. A. A. Potanin and W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
  27. W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, and J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
  28. S. Sinha, “Dynamic structure factors of a dense mixture,” Phys. Rev. E 49, 3504–3507 (1994).
  29. B. Gotzelmann, A. Haase, and S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
  30. D. J. Courtemanche, T. A. Pasmore, and F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
  31. L. V. Woodcock, “Glass-transition in the hard-sphere model and the Kauzmann paradox,” Ann. N. Y. Acad. Sci. 371, 274–298 (1981).
  32. B. J. Alder and T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
  33. E. Bartsch, V. Frenz, S. Moller, and H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
  34. W. van Megen and S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited