OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4170–4178

Dynamic light-scattering study of self-assembly of diblock copolymers in supercritical carbon dioxide

Tadanori Koga, Shuiqin Zhou, and Benjamin Chu  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4170-4178 (2001)
http://dx.doi.org/10.1364/AO.40.004170


View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-pressure dynamic light-scattering (DLS) technique has been utilized to study the behavior in solution of poly(1,1-dihydroperfluorooctylacrylate) and poly(vinyl acetate) (PFOA-b-PVAC) in supercritical carbon dioxide. The hydrodynamic-radius distribution for each species, such as unimers, micelles, and large aggregates, were determined under both isobaric and isothermal conditions over a pressure range of 9–55.2 MPa, and a temperature range of 25–75 °C, respectively. The DLS results clearly showed both pressure-induced and temperature-induced dissolution and association behavior for the copolymer in supercritical carbon dioxide. Also presented are some preliminary experimental results for the micellar self-assembly of a fluorinated block copolymer, poly(2-tetrahydropyranyl methacrylate)-b-poly(1h,1h-perfluorooctyl methacrylate) (THPMA-b-F7MA), in supercritical carbon dioxide by use of a new high-pressure cell that allows us to conduct simultaneous small-angle x-ray scattering and DLS measurements.

© 2001 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: January 8, 2001
Revised Manuscript: April 30, 2001
Published: August 20, 2001

Citation
Tadanori Koga, Shuiqin Zhou, and Benjamin Chu, "Dynamic light-scattering study of self-assembly of diblock copolymers in supercritical carbon dioxide," Appl. Opt. 40, 4170-4178 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. McHugh, V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, 2nd ed. (Butterworth, Stoneham, Mass., 1994).
  2. Z. Guan, J. M. DeSimone, “Fluorocarbon-based heterophase polymeric materials. 1. Block copolymer surfactants for carbon dioxide applications,” Macromolecules 27, 5527–5532 (1994). [CrossRef]
  3. D. A. Canelas, D. E. Betts, J. M. DeSimone, “Dispersion polymerization of styrene in supercritical carbon dioxide: importance of effective surfactants,” Macromolecules 29, 2818–2821 (1996). [CrossRef]
  4. J. B. McClain, D. Londono, J. R. Combes, T. J. Romack, D. A. Canelas, D. E. Betts, G. D. Wignall, E. T. Samulski, J. M. DeSimone, “Solution properties of a CO2-soluble fluoropolymer via small angle neutron scattering,” J. Am. Chem. Soc. 118, 917–918 (1996). [CrossRef]
  5. J. A. Hyatt, “Liquid and supercritical carbon dioxide as organic solvents,” J. Org. Chem. 49, 5097–5101 (1984). [CrossRef]
  6. J. M. Ritter, A. M. F. Palavvra, C. P. C. Kao, M. E. Paulaitis, “Three-phase liquid–liquid–gas equilibrium in the ternary system of trans-decalin-n-decane carbon dioxide,” Fluid Phase Equilibria 55, 173–191 (1990). [CrossRef]
  7. E. W. Kaler, J. F. Billman, J. L. Fulton, R. D. Smith, “A small-angle neutron scattering study of intermicellar interactions in microemulsions of AOT, water, and near-critical propane,” J. Phys. Chem. 95, 458–462 (1991). [CrossRef]
  8. J. L. Fulton, D. M. Pfund, R. D. Smith, N. F. Carnaham, L. Quintero, M. Capel, K. Leontaritis, “A small angle x-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions,” Langmuir 9, 2035–2044 (1993). [CrossRef]
  9. J. L. Fulton, D. M. Pfund, J. B. McClain, T. J. Romack, E. E. Maury, J. R. Combes, E. T. Samulski, J. M. DeSimone, “Aggregation of amphiphilic molecules in supercritical carbon dioxide: a small angle x-ray scattering study,” Langmuir 11, 4241–4249 (1995). [CrossRef]
  10. R. G. Zielinski, M. E. Paulaitis, E. W. Kaler, “A sapphire cell for neutron scattering at elevated pressures,” Rev. Sci. Instrum. 67, 2612–2614 (1996). [CrossRef]
  11. D. Chillura-Martino, R. Triolo, J. B. McClain, J. R. Combes, D. E. Betts, D. A. Canelas, J. M. DeSimone, E. T. Samulski, H. D. Cochran, J. D. Londono, G. D. Wignall, “Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide,” J. Mol. Struct. 383, 3–10 (1996). [CrossRef]
  12. J. B. McClain, D. E. Betts, D. A. Canelas, E. T. Samulski, J. M. DeSimone, J. D. Londono, H. D. Cochran, G. D. Wignall, D. Chillura-Martino, R. Triolo, “Design of nonionic surfactants for supercritical carbon dioxide,” Science 274, 2049–2052 (1996). [CrossRef] [PubMed]
  13. V. P. Saraf, E. Kiran, “Solubility of polystyrene in supercritical fluids,” J. Supercrit. Fluids 1, 37–44 (1988). [CrossRef]
  14. L. Liu, Z. Cheng, K. Inomata, S. Zhou, B. Chu, “Synchrotron SAXS and laser light scattering studies of aggregation behavior of poly(1,1-dihydroperfluorooctyl acrylate-b-vinyl acetate) diblock copolymer in supercritical carbon dioxide,” Macromolecules 32, 5836–5845 (1999). [CrossRef]
  15. F. Triolo, A. Triolo, R. Triolo, J. D. Londono, G. D. Wignall, J. B. McClain, D. E. Betts, S. Wells, E. T. Samulski, J. M. DeSimone, “Critical micelle density for the self-assembly of block copolymer surfactants in supercritical carbon dioxide,” Langmuir 16, 416–421 (2000). [CrossRef]
  16. J. L. Fulton, J. P. Blitz, J. M. Tingey, R. D. Smith, “Reverse micelle and microemulsion phases in supercritical xenon and ethane: scattering and spectroscopy probe studies,” J. Phys. Chem. 93, 4198–4204 (1989). [CrossRef]
  17. R. D. Smith, J. L. Fulton, J. P. Blitz, J. M. Tingey, “Reverse micelles and microemulsions in near-critical and supercritical fluids,” J. Phys. Chem. 94, 781–787 (1990). [CrossRef]
  18. E. J. Beckman, R. D. Smith, “Microemulsions formed from nonionic surfactants in near-critical and supercritical alkanes: quasi-elastic light scattering investigations,” J. Phys. Chem. 94, 3729–3734 (1990). [CrossRef]
  19. J. Kojima, M. Takenaka, Y. Nakayama, T. Hashimoto, “Apparatus for measuring time-resolved light scattering profiles from supercritical polymer solutions undergoing phase separation under high pressure,” Rev. Sci. Instrum. 66, 4066–4072 (1995). [CrossRef]
  20. E. Buhler, A. V. Dobrynin, J. M. DeSimone, M. Rubinstein, “Light-scattering study of diblock copolymers in supercritical carbon dioxide: CO2 density-induced micellization transition,” Macromolecules 31, 7347–7355 (1998). [CrossRef]
  21. S. Zhou, B. Chu, H. S. Dhadwal, “High pressure fiber optic light scattering spectrometer,” Rev. Sci. Instrum. 69, 1955–1960 (1998). [CrossRef]
  22. H. S. Dhadwal, B. Chu, “A fiber-optic light scattering spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1984). [CrossRef]
  23. T. Koga, S. Zhou, B. Chu, J. L. Fulton, S. Yang, C. K. Ober, B. Erman, “High-pressure cell for simultaneous small-angle x-ray scattering and laser light scattering measurements,” Rev. Sci. Instrum. (to be published).
  24. D. Betts, T. Johnson, C. Anderson, J. M. DeSimone, “Controlled radical polymerization methods for the synthesis of non-ionic surfactants for CO2,” Polym. Prepr. Am. Chem Soc. Div. Polym. Chem. 38, 760–761 (1997).
  25. S. Yang, J. Wang, K. Ogino, S. Valiyaveettil, C. K. Ober, “Low-surface-energy fluoromethacrylate block copolymers with patternable elements,” Chem. Mater. 1, 33–40 (2000). [CrossRef]
  26. W. F. Sherman, A. A. Stadtmuller, Experimental Techniques in High-Pressure Research (Wiley, New York, 1987).
  27. M. Ji, X. Chen, C. M. Wai, J. L. Fulton, “Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion,” J. Am. Chem. Soc. 121, 2631–2632 (1999). [CrossRef]
  28. B. Chu, Laser Light Scattering, 2nd ed. (Academic, New York, 1991).
  29. B. J. Berne, R. Pecora, Dynamic Light Scattering (Kreiger, Malabar, Fla., 1990).
  30. S. W. Provencher, “Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy,” Makromol. Chem. 180, 201–209 (1979). [CrossRef]
  31. S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982). [CrossRef]
  32. K. Stephan, K. Lucas, Viscosity of Dense Fluids (Plenum, New York, 1979). [CrossRef]
  33. G. J. Besserer, D. B. Robinson, “Refractive indices of ethane, carbon dioxide, and isobutane,” J. Chem. Eng. Data 18, 137–140 (1973). [CrossRef]
  34. S. Angus, B. Armstrong, K. M. de Reuck, International Thermodynamic Tables of the Fluid State Carbon Dioxide (Pergamon, London, 1973).
  35. S. Zhou, B. Chu, “Laser light scattering study of pressure-induced micellization of a diblock copolymer of poly(1,1-dihydroperfluorooctylacrylate) and poly(vinyl acetate) in supercritical carbon dioxide,” Macromolecules 31, 5300–5308 (1998). [CrossRef]
  36. S. Zhou, B. Chu, “Self-assembly behavior of a diblock copolymer of poly(1,1-dihydroperfluorooctylacrylate) and poly(vinyl acetate) in supercritical carbon dioxide,” Macromolecules 31, 7746–7755 (1998). [CrossRef]
  37. A. Dardin, J. B. Cain, J. M. DeSimone, C. S. Johnson, E. T. Samulski, “High-pressure NMR of polymers dissolved in supercritical carbon dioxide,” Macromolecules 30, 3593–3599 (1997). [CrossRef]
  38. A. Gunier, G. Fournet, Small-Angle Scattering of X-Rays (Wiley, London, 1955).
  39. A. Halperin, M. Tirrel, T. P. Lodge, “Tethered chains in polymer microstructures,” Adv. Polym. Sci. 100, 33–71 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited