OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4275–4285

Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence

Gaspard Guérit, Philippe Drobinski, Pierre H. Flamant, and Béatrice Augère  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4275-4285 (2001)
http://dx.doi.org/10.1364/AO.40.004275


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There have been many analyses of the reduction of lidar system efficiency in bistatic geometry caused by beam spreading and by fluctuations along the two paths generated by refractive-index turbulence. Although these studies have led to simple, approximate results that provide a reliable basis for preliminary assessment of lidar performance, they do not apply to monostatic lidars. For such systems, calculations and numerical simulations predict an enhanced coherence for the backscattered field. However, to the authors’ knowledge, a simple analytical mathematical framework for diagnosing the effects of refractive-index turbulence on the performance of both bistatic and monostatic coherent lidars does not exist. Here analytical empirical expressions for the transverse coherence variables and the heterodyne intensity are derived for bistatic and monostatic lidars as a function of moderate atmospheric refractive-index turbulence within the framework of the Gaussian-beam approximation.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7060) Atmospheric and oceanic optics : Turbulence
(030.1640) Coherence and statistical optics : Coherence
(030.6140) Coherence and statistical optics : Speckle

History
Original Manuscript: September 25, 2000
Revised Manuscript: April 20, 2001
Published: August 20, 2001

Citation
Gaspard Guérit, Philippe Drobinski, Pierre H. Flamant, and Béatrice Augère, "Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence," Appl. Opt. 40, 4275-4285 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6, 809–819 (1989). [CrossRef]
  2. R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993). [CrossRef]
  3. P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998). [CrossRef]
  4. P. Drobinski, A. M. Dabas, C. Haeberli, P. H. Flamant, “On the small-scale dynamics of flow splitting in the Rhine valley during a shallow foehn event,” Boundary Layer Meteorol. 99, 277–296 (2001). [CrossRef]
  5. P. Drobinski, A. M. Dabas, P. H. Flamant, “Remote measurement of turbulent wind spectra by heterodyne Doppler lidar technique,” J. Appl. Meteorol. 39, 2434–2451 (2000). [CrossRef]
  6. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  7. P. Drobinski, A. M. Dabas, P. Salamitou, “Spectral diversity technique for heterodyne Doppler lidar that uses hard target returns,” Appl. Opt. 39, 376–385 (2000). [CrossRef]
  8. X. Favreau, A. Delaval, P. H. Flamant, A. Dabas, P. Delville, “Four-element receiver for pulsed 10-µm heterodyne Doppler lidar,” Appl. Opt. 39, 2441–2448 (2000). [CrossRef]
  9. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994). [CrossRef] [PubMed]
  10. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981). [CrossRef] [PubMed]
  11. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  12. P. Salamitou, F. Darde, P. H. Flamant, “A semi analytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994). [CrossRef]
  13. D. L. Fried, “Atmospheric modulation noise in an optical heterodyne receiver,” IEEE J. Quantum Electron. QE-6, 213–221 (1967). [CrossRef]
  14. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  15. A. N. Kolmogorov, “Energy dissipation in locally isotropic turbulence,” Doklady Akad. Nauk SSSR 32, 19–21 (1941).
  16. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  17. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986). [CrossRef]
  18. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  19. R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987). [CrossRef]
  20. A. Belmonte, B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000). [CrossRef]
  21. R. G. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000). [CrossRef]
  22. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39, 5426–5445 (2000). [CrossRef]
  23. P. Drobinski, A. M. Dabas, P. Delville, P. H. Flamant, J. Pelon, R. M. Hardesty, “Refractive-index structure parameter in the planetary boundary layer: comparison of measurements taken with a 10.6-µm coherent lidar, a 0.9-µm scintillometer, and in-situ sensors,” Appl. Opt. 38, 1648–1656 (1999). [CrossRef]
  24. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  25. R. F. Lutomirsky, H. T. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–487 (1971). [CrossRef]
  26. R. F. Lutomirsky, H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef]
  27. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.
  28. M. H. Lee, J. F. Holmes, J. R. Kerr, “Statistics of speckle propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 66, 1164–1172 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited