OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4326–4333

Temperature-dependent polarization effects in Ce:LiLuF

Andrew J. S. McGonigle, Richard Moncorgé, and David W. Coutts  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4326-4333 (2001)
http://dx.doi.org/10.1364/AO.40.004326


View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on tuned-laser, pump–probe-gain, and fluorescence yield studies of the effect that crystal temperature plays on the polarized emission characteristics of Ce:LiLuF. It was found that σ-polarized emission at the 327-nm fluorescence spectra peak is characterized by smaller laser pulse buildup times, higher small-signal gains, and smaller output powers than the π-polarized 327-nm emission. We concluded that excited-state absorption (ESA) (and the resultant formation of color centers) is more severe for σ-polarized emission than for π-polarized emission in this spectral region. We postulate that the enhancement in laser performance and crystal fluorescence observed with crystal cooling is due to narrowing of the ESA absorption band that reduces the probability of ESA and color-center formation.

© 2001 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3320) Lasers and laser optics : Laser cooling
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.6810) Lasers and laser optics : Thermal effects

History
Original Manuscript: December 4, 2000
Published: August 20, 2001

Citation
Andrew J. S. McGonigle, Richard Moncorgé, and David W. Coutts, "Temperature-dependent polarization effects in Ce:LiLuF," Appl. Opt. 40, 4326-4333 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. V. Govorkov, A. O. Weissner, T. Schroder, U. Stamm, W. Zschocke, D. Bastings, “Efficient high average power and narrow spectral linewidth operation of Ce:LiCAF lasers at 1-kHz repetition rate,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 2–5.
  2. A. J. S. McGonigle, D. W. Coutts, C. E. Webb, “530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999). [CrossRef]
  3. Z. Liu, K. Shimamura, K. Nakano, N. Mujilatu, T. Fukuda, T. Kozeki, H. Ohtake, N. Sarukura, “Direct generation of 27-mJ pulses from a Ce3+:LiLuF4 oscillator using a large-size Ce3+:LiLuF4 crystal,” Jpn. J. Appl. Phys. 39, 88–89 (2000). [CrossRef]
  4. P. Rambaldi, R. Moncorgé, J. P. Wolf, C. Pedrini, J. Y. Gesland, “Efficient and stable pulsed laser operation of Ce:LiLuF4 around 308 nm,” Opt. Commun. 146, 163–166 (1998). [CrossRef]
  5. W. J. Miniscalco, J. M. Pellegrino, W. M. Yen, “Measurements of excited-state absorption of Ce3+:YAG,” J. Appl. Phys. 49, 6109–6111 (1978). [CrossRef]
  6. R. R. Jacobs, W. F. Krupke, M. J. Weber, “Measurements of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for 5d–4f rare earth ion lasers,” Appl. Phys. Lett. 33, 410–412 (1978). [CrossRef]
  7. D. S. Hamilton, S. K. Gayen, G. J. Pogatshnik, R. D. Ghen, W. J. Miniscalco, “Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12,” Phys. Rev. B 39, 8807–8815 (1989). [CrossRef]
  8. G. J. Pogatshnik, D. S. Hamilton, “Excited-state absorption of Ce3+ ions in Ce3+:CaF2,” Phys. Rev. B. 36, 8251–8257 (1987). [CrossRef]
  9. D. J. Ehlrich, P. F. Moulton, R. M. Osgood, “Ultraviolet solid state Ce:YLF laser at 325 nm,” Opt. Lett. 4, 184–186 (1979). [CrossRef]
  10. D. J. Ehlrich, P. F. Moulton, R. M. Osgood, “Optically pumped Ce:LaF3 laser at 286 nm,” Opt. Lett. 5, 339–341 (1980). [CrossRef]
  11. M. A. Dubinskii, V. V. Semanshko, A. K. Naumov, R. Yu. Abdulsabirov, S. L. Korableva, “Ce3+-doped colquiriite, a new concept for all-solid-state tunable ultraviolet laser,” J. Mod. Opt. 40, 1–5 (1993).
  12. C. D. Marshall, J. A. Speth, S. A. Payne, W. P. Krupke, G. J. Quarles, V. Castillo, B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994).
  13. J. F. Pinto, G. H. Rosenblatt, L. Esterowitz, G. J. Quarles, “Tunable solid-state laser action in Ce3+:LiSrAlF6,” Electron. Lett. 30, 240–241 (1994). [CrossRef]
  14. M. A. Dubinskii, R. Yu. Abdulsabirov, S. L. Korableva, A. K. Naumov, V. V. Semanshko, “A new active material for a solid state UV laser with an excimer pump,” Laser Phys. 4, 480–484 (1994).
  15. N. Sarakura, M. A. Dubinskii, Z. Liu, V. V. Semanshko, A. K. Naumov, S. L. Korableva, R. Yu. Abdulsabirov, K. Edmatsu, Y. Suzuki, “Ce3+ activated fluorides crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1, 792–804 (1995).
  16. N. Sarukura, Z. Liu, S. Izumida, M. A. Dubinskii, R. Yu. Abdulsabirov, S. L. Korableva, “All-solid-state tunable ultraviolet subnanosecond laser with direct pumping by the fifth harmonic of a Nd:YAG laser,” Appl. Opt. 37, 6446–6448 (1998).
  17. A. J. S. McGonigle, D. W. Coutts, C. E. Webb, “A 380-mW 7-kHz cerium LiLuF laser pumped by the frequency doubled yellow output of a copper-vapor laser,” IEEE J. Sel. Top. Quantum Electron. 5, 1526–1531 (1999). [CrossRef]
  18. A. J. S. McGonigle, S. Girard, D. W. Coutts, C. E. Webb, R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999). [CrossRef]
  19. P. Rambaldi, M. Douard, J. P. Wolf, “New UV tunable solid-state lasers for lidar applications,” Appl. Phys. B 61, 117–120 (1995). [CrossRef]
  20. D. W. Coutts, “Optimization of line focusing geometry for efficiency nonlinear frequency conversion from copper-vapor lasers,” IEEE J. Quantum Electron. 31, 2208–2214 (1995). [CrossRef]
  21. D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995). [CrossRef]
  22. J. Andreissen, H. Merenga, C. M. Combes, P. Dorenbos, C. W. E. van Eijk, “Calculation of 4f and 5d energy levels of cerium in LiYF4 and LiLuF4 and LiBaF3, and estimate of local distortion,” in Proceedings of the International Conference on Inorganic Scintillators and Their Applications, 1995, P. Dorenbos, C. W. E. van Eijk, eds. (Delft University Press, Delft University of Technology, Delft, 1996), pp. 142–143.
  23. K.-S. Lim, D. S. Hamilton, “Optical gain and loss studies in Ce3+:YLF4,” J. Opt. Soc. Am. B 6, 1401–1406 (1989). [CrossRef]
  24. K.-S. Lim, D. S. Hamilton, “UV-induced loss mechanisms in a Ce3+:YLF4 laser,” J Lumin. 40/41, 319–320 (1988).
  25. D. W. Coutts, J. S. Cashmore, C. E. Webb, “Multi kHz PRF cerium lasers pumped by frequency doubled copper vapour lasers,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1996), paper ThE3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited