OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4344–4352

Remote Mapping of Vegetation and Geological Features by Lidar in the 9–11-μm Region

Bernard R. Foy, Brian D. McVey, Roger R. Petrin, Joe J. Tiee, and Carl W. Wilson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 24, pp. 4344-4352 (2001)

View Full Text Article

Acrobat PDF (2068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report examples of the use of a scanning tunable CO2 laser lidar system in the 9–11-μm region to construct images of vegetation and rocks at ranges as far as 5 km from the instrument. Range information is combined with horizontal and vertical distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Object classification is based on reflectance spectra, which are sufficiently distinct to allow discrimination between several tree species, between trees and scrub vegetation, and between natural and artificial targets. Limitations imposed by laser speckle noise are discussed.

© 2001 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(280.3640) Remote sensing and sensors : Lidar

Bernard R. Foy, Brian D. McVey, Roger R. Petrin, Joe J. Tiee, and Carl W. Wilson, "Remote Mapping of Vegetation and Geological Features by Lidar in the 9–11-μm Region," Appl. Opt. 40, 4344-4352 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Academic, Boston, 1997), pp. 389–473.
  2. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
  3. N. A. Drake, S. Mackin, and J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
  4. P. M. Teillet, K. Staenz, and D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
  5. R. E. Roger and J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
  6. Z. K. Chen, C. D. Elvidge, and D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
  7. A. R. Gillespie, A. B. Kahle, and F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
  8. Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, and A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
  9. Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, and T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
  10. F. E. Hoge, R. N. Swift, and J. K. Yungel, “Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants,” Appl. Opt. 22, 2991–3000 (1983).
  11. H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
  12. K. P. Gunther, H. G. Dahn, and W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
  13. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
  14. W. Ludeker, H. G. Dahn, K. P. Gunther, and H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
  15. R. M. Narayanan and M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
  16. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, and J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37, 4744–4749 (1998).
  17. H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, and K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
  18. D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, and J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
  19. P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
  20. R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, and W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
  21. T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, and R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
  22. A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, and T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
  23. M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, and D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
  24. A. B. Kahle, M. S. Shumate, and D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
  25. H. Ahlberg, S. Lundqvist, and B. Olsson, “CO2-laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
  26. C. B. Carlisle, J. E. Vanderlaan, L. W. Carr, P. Adam, and J. P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical-vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
  27. P. E. Powers, T. J. Kulp, and R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39, 1440–1448 (2000).
  28. D. C. Thompson, G. E. Busch, C. J. Hewitt, D. K. Remelius, T. Shimada, C. E. M. Strauss, C. W. Wilson, and T. J. Zaugg, “High-speed random access laser tuning,” Appl. Opt. 38, 2545–2553 (1999).
  29. D. H. Nelson, D. L. Walters, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, and R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39, 1857–1871 (2000).
  30. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. D. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–54.
  31. E. P. MacKerrow, M. J. Schmitt, and D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
  32. N. Menyuk, D. K. Killinger, and C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
  33. J. A. Fox, C. R. Gautier, and J. L. Ahl, “Practical considerations for the design of CO2 lidar systems,” Appl. Opt. 27, 847–855 (1988).
  34. M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 1. Theory,” J. Mod. Opt. 38, 2115–2135 (1991).
  35. M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 2. Experimental results,” J. Mod. Opt. 42, 2081–2094 (1995).
  36. M. S. Shumate, S. Lundqvist, U. Persson, and S. T. Eng, “Differential reflectance of natural and man-made materials at CO2-laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
  37. P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, and I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2-laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
  38. R. M. Narayanan and S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
  39. A. Ben-David, S. L. Emery, S. W. Gotoff, and F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224 (1992).
  40. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, and P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
  41. M. J. Bartholomew, A. B. Kahle, and G. Hoover, “Infrared spectroscopy (2.3–20 μm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
  42. R. N. Clark, in Manual of Remote Sensing, A. Rencz, ed. (Wiley, New York, 1999), Chap. 1.
  43. R. M. Narayanan, S. E. Green, and D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
  44. The ASTER spectral library is available at the web site of the Jet Propulsion Laboratory, Pasadena, Calif.
  45. R. J. Nemzek, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1995).
  46. M. A. Jarzembski and V. Srivastava, “Comparison of continuous-wave CO2 lidar calibration by use of Earth–surface targets in laboratory and airborne measurements,” Appl. Opt. 37, 7120–7127 (1998).
  47. Ref. 1, Chapt. 9.
  48. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis (Springer, New York, 1999), Chapt. 9.
  49. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976).
  50. HITRAN 1996 Spectroscopic Database (Ontar Corporation, North Andover, Mass.).
  51. W. B. Grant, “Water-vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
  52. A. C. Rencher, Methods of Multivariate Analysis (Wiley, New York, 1995), p. 303.
  53. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), p. 118.
  54. Ref. >48, p. 249.
  55. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833–1840 (1999).
  56. X. Yu and I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited