OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4353–4364

Airborne polarized lidar detection of scattering layers in the ocean

Alexander P. Vasilkov, Yury A. Goldin, Boris A. Gureev, Frank E. Hoge, Robert N. Swift, and C. Wayne Wright  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4353-4364 (2001)
http://dx.doi.org/10.1364/AO.40.004353


View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the time–depth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the time–depth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the time–depth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 20–25 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.

© 2001 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: October 26, 2000
Revised Manuscript: April 2, 2001
Published: August 20, 2001

Citation
Alexander P. Vasilkov, Yury A. Goldin, Boris A. Gureev, Frank E. Hoge, Robert N. Swift, and C. Wayne Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).
  2. B. Billard, R. H. Abbot, M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986). [CrossRef]
  3. D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).
  4. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988). [CrossRef] [PubMed]
  5. I. E. Penner, V. S. Shamanaev, “Simultaneous sounding of the sea with shipborne and airborne lidars,” Opt. Atmos. Okeana 6, 107–111 (1993).
  6. J. H. Smart, K. H. Kwon, “Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles,” Lidar Remote Sensing of Natural Waters: From Theory to Practice: CIS Selected Papers, V. I. Feygels, Y. I. Kopilevich, eds., Proc. SPIE2964, 100–109 (1996). [CrossRef]
  7. J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997). [CrossRef] [PubMed]
  8. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves,” Appl. Opt. 37, 1589–1595 (1998). [CrossRef]
  9. J. H. Churnside, V. V. Tatarskii, J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt. 37, 3105–3112 (1998). [CrossRef]
  10. V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).
  11. J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993). [CrossRef]
  12. J. E. Kalshoven, M. R. Tierney, C. S. T. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995). [CrossRef] [PubMed]
  13. J. Cariou, B. Le Jenne, J. Lotran, Y. Guern, “Polarization effects of sea water and underwater targets,” Appl. Opt. 29, 1689–1695 (1990). [CrossRef] [PubMed]
  14. W. P. Van de Merwe, D. R. Huffman, B. V. Bronk, “Reproductibility and sensitivity of polarized light scattering for identifying bacterial suspensions,” Appl. Opt. 28, 5052–5057 (1989). [CrossRef] [PubMed]
  15. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596–1601 (1998). [CrossRef]
  16. A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998). [CrossRef]
  17. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).
  18. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).
  19. E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).
  20. L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).
  21. L. S. Dolin, “Characteristics of a restricted light beam in an absorbing medium with highly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 19, 400–405 (1983).
  22. Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).
  23. K. J. Voss, E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef] [PubMed]
  24. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).
  25. A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999). [CrossRef]
  26. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).
  27. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982). [CrossRef] [PubMed]
  28. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).
  29. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).
  30. A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).
  31. D. B. Rogozkin, “Light pulse beam propagation in anisotropically scattering medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 23, 275–281 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited