OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4376–4386

Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods

Anthony J. Baran, Ping Yang, and Stephan Havemann  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4376-4386 (2001)
http://dx.doi.org/10.1364/AO.40.004376


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculated the scattering and absorption properties of randomly oriented hexagonal ice columns using T-matrix theory, employing analytic orientation averaging, and the finite-difference time-domain method, which uses a numerical procedure to simulate random orientation. The total optical properties calculated are the extinction efficiency, absorption efficiency, single-scattering albedo, and the asymmetry parameter. The optical properties are calculated at the wavelengths of 0.66, 8.5, and 12 µm, up to a size parameter of 20 at 0.66 µm and 15 at the two other wavelengths. The phase-matrix elements P11, P12, and P22 are also calculated and compared, up to a size parameter of 20 at 0.66 µm and 15 at 12.0 µm. The scattering and absorption solutions obtained from the two independent electromagnetic methods are compared and contrasted, as well as the central processing unit time and memory load for each size parameter. It is found that the total optical properties calculated by the two methods are well within 3% of each other for all three wavelengths and size parameters. In terms of the phase-matrix elements it is found that there are some differences between the T-matrix and the finite-difference time-domain methods appearing in all three elements. Differences between the two methods for the P11 element are seen particularly at scattering angles from approximately 120° to 180°; and at the scattering angle of 180°, relative differences are less than 16%. At scattering angles less than 100°, agreement is generally within a few percent. Similar results are also found for the P12 and P22 elements of the phase matrix. The validity of approximating randomly oriented hexagonal ice columns by randomly oriented equal surface area circular cylinders is also investigated in terms of the linear depolarization ratio.

© 2001 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: November 20, 2000
Revised Manuscript: May 18, 2001
Published: August 20, 2001

Citation
Anthony J. Baran, Ping Yang, and Stephan Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  2. D. L. Hartmann, M. E. Ockert-Bell, M. L. Michelsen, “The effect of cloud type on earth’s energy balance: global analysis,” J. Clim. 5, 1281–1304 (1992). [CrossRef]
  3. L. Donner, C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Strom, K. N. Liou, “Large-scale ice clouds in the GFDL SKYHI general circulation model,” J. Geophys. Res. 102, 21745–21768 (1997). [CrossRef]
  4. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  5. J. N. Mitchell, C. A. Senior, W. J. Ingram, “CO2 and climate: a missing feedback?” Nature (London) 341, 132–134 (1989). [CrossRef]
  6. J. E. Kristjánsson, J. M. Edwards, D. L. Mitchell, “The impact of a new scheme for optical properties of ice crystals on the climate of two GCMs,” J. Geophys. Res. 105, 10063–10079 (2000). [CrossRef]
  7. A. J. Baran, P. D. Watts, P. N. Francis, “Testing the coherence of microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements,” J. Geophys. Res. 104, 31673–31683 (1999). [CrossRef]
  8. M. Doutriaux-Boucher, J.-C. Buriez, G. Brogniez, L. Labonnote, A. J. Baran, “Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models,” Geophys. Res. Lett. 27, 109–112 (2000). [CrossRef]
  9. B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models,” J. Geophys. Res. 105, 11767–11780 (2000). [CrossRef]
  10. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapour properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992). [CrossRef]
  11. M. Wiegner, P. Seifert, P. Schluessel, “Radiative effects of cirrus clouds in Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager channels,” J. Geophys. Res. 103, 23217–23230 (1998). [CrossRef]
  12. P. W. Stackhouse, G. L. Stephens, “A theoretical and observational study of the radiative properties of cirrus: results from FIRE 1986,” J. Atmos. Sci. 48, 2044–2059 (1991). [CrossRef]
  13. P. N. Francis, A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, “An observational and theoretical study of the radiative properties of cirrus: some results from ICE’89,” Q. J. R. Meteorol. Soc. 120, 809–848 (1994). [CrossRef]
  14. A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995). [CrossRef] [PubMed]
  15. P. Yang, K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  16. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev D 3, 825–839 (1971). [CrossRef]
  17. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  18. T. Wriedt, A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199–213 (1998). [CrossRef]
  19. H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998). [CrossRef]
  20. D. W. Mackowski, M. I. Mishchenko, “Calculation of the T-matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996). [CrossRef]
  21. A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972). [CrossRef]
  22. S. Havemann, A. J. Baran, “Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders,” J. Quant. Spectrosc. Radiat. Transfer 70, 139–158 (2001). [CrossRef]
  23. G. Mie, “Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908). [CrossRef]
  24. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992). [CrossRef] [PubMed]
  25. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  26. F. M. Schulz, K. Stammes, J. J. Stammes, “Point group symmetries in electromagnetic scattering,” J. Opt. Soc. Am. A 16, 853–865 (1999). [CrossRef]
  27. Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary element method,” Appl. Opt. 39, 5541–5546 (2000). [CrossRef]
  28. S. Havemann, A. J. Baran, “Extension of T-matrix to scattering of electromagnetic plane waves by general 3D dielectric particles: application to hexagonal ice columns and plates,” in Problems in Atmospheric Radiation, W. L. Smith, Y. Timofeyev, eds. (Deepak, Hampton, Va., 2000).
  29. S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  30. P. Yang, K. N. Liou, “Finite-difference time-domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  31. P. Yang, K. N. Liou, M. I. Mishchenko, B. C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000). [CrossRef]
  32. B. J. Berenger, “Three-dimensional perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
  33. W. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999). [CrossRef]
  34. M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998). [CrossRef]
  35. T. Wriedt, U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transfer 60, 411–423 (1998). [CrossRef]
  36. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  37. S. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  38. A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970). [CrossRef]
  39. V. Vouk, “Projected area of convex bodies,” Nature (London) 162, 330–331 (1948). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited