OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4387–4394

Ammonia Detection by use of Near-Infrared Diode-Laser-Based Overtone Spectroscopy

Ricardo Claps, Florian V. Englich, Darrin P. Leleux, Dirk Richter, Frank K. Tittel, and Robert F. Curl  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4387-4394 (2001)
http://dx.doi.org/10.1364/AO.40.004387


View Full Text Article

Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a portable diode-laser-based sensor for NH3 detection using vibrational overtone absorption spectroscopy at 1.53 μm. Use of fiber-coupled optical elements makes such a trace gas sensor rugged and easy to align. On-line data acquisition and processing requiring <30 s can be performed with a laptop PC running LabVIEW software. The gas sensor was used primarily for NH3 concentration measurements with a sensitivity of 0.7 parts per million (signal-to-noise ratio of 3) over a two-week period in a bioreactor being developed at the NASA Johnson Space Center for water treatment technologies to support long-duration space missions. The feasibility of simultaneous, real-time measurements of NH3 and CO2 concentrations is also reported.

© 2001 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(280.3420) Remote sensing and sensors : Laser sensors
(300.6360) Spectroscopy : Spectroscopy, laser

Citation
Ricardo Claps, Florian V. Englich, Darrin P. Leleux, Dirk Richter, Frank K. Tittel, and Robert F. Curl, "Ammonia Detection by use of Near-Infrared Diode-Laser-Based Overtone Spectroscopy," Appl. Opt. 40, 4387-4394 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4387


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Ohtsu, H. Kotani, and H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 μm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
  2. M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, and J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
  3. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67 (3), 283–288 (1998).
  4. I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).
  5. G. Modugno and C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 μm,” Infrared Phys. Technol. 40, 93–99 (1999).
  6. L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm−1,” J. Mol. Spectrosc. 162, 230–245 (1993).
  7. M. E. Webber, D. S. Baer, and R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
  8. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
  9. Y. He and B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
  10. R. Peeters, G. Berden, A. Apituley, and G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
  11. E. V. Stepanov, P. V. Zyrianov, and A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE 2835, 271–281 (1996).
  12. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  13. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm,” Appl. Opt. 40, 821–828 (2001).
  14. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)
  15. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed-feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
  16. D. G. Lancaster, D. Richter, R. F. Curl, and F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 μm,” Appl. Phys. B 67, 339–345 (1998).
  17. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
  18. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
  19. D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark and R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.
  20. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955), Chap. 13, p. 364, Table 13.4.
  21. G. Durry, I. Pouchet, N. Amarouche, T. Danguy, and G. Megie, “Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers,” Appl. Opt. 39, 5609–5619 (2000).
  22. G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, and J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE 2835, pp. 236–247 (1996).
  23. P. Brimblecombe and S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
  24. J. C. Graf, NASA JSC Crew and Thermal Systems Division, Houston, Tex. (personal communication, September 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited