OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4404–4415

Diode-laser absorption sensor for line-of-sight gas temperature distributions

Scott T. Sanders, Jian Wang, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4404-4415 (2001)
http://dx.doi.org/10.1364/AO.40.004404


View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities (>1.7 nm ≈ 30 cm-1) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200–700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response (∼30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.

© 2001 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.2020) Lasers and laser optics : Diode lasers
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: January 2, 2001
Revised Manuscript: May 7, 2001
Published: August 20, 2001

Citation
Scott T. Sanders, Jian Wang, Jay B. Jeffries, and Ronald K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989). [CrossRef] [PubMed]
  2. S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981). [CrossRef]
  3. E. R. Furlong, “Diode-laser absorption spectroscopy applied for the active control of combustion,” Ph.D. dissertation, Thermosciences Division Report 116 (Mechanical Engineering Department, Stanford University, Stanford, Calif., 1998).
  4. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999). [CrossRef]
  5. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000). [CrossRef]
  6. J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).
  7. L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000). [CrossRef] [PubMed]
  8. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987). [CrossRef]
  9. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  10. L. C. Philippe, R. K. Hanson, “Laser-diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  11. R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998). [CrossRef]
  12. T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992). [CrossRef]
  13. P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999). [CrossRef]
  14. J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001). [CrossRef]
  15. H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. Gauggel, F. Monti di Sopra, “Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection,” Appl. Opt. 39, 2475–2479 (2000). [CrossRef]
  16. J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  17. H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998). [CrossRef]
  18. S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000). [CrossRef]
  19. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994). [CrossRef] [PubMed]
  20. D. S. Baer, R. K. Hanson, M. E. Newfield, N. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994). [CrossRef]
  21. M. P. Arroyo, R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  22. J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode-lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef] [PubMed]
  23. C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited