OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 24 — Aug. 20, 2001
  • pp: 4416–4426

Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment

Hans Naus, Ivo H. M. van Stokkum, Wim Hogervorst, and Wim Ubachs  »View Author Affiliations


Applied Optics, Vol. 40, Issue 24, pp. 4416-4426 (2001)
http://dx.doi.org/10.1364/AO.40.004416


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intensity and noise properties of decay transients obtained in a generic pulsed cavity ringdown experiment are analyzed experimentally and theoretically. A weighted nonlinear least-squares analysis of digitized decay transients is shown that avoids baseline offset effects that induce systematic deviations in the estimation of decay rates. As follows from simulations not only is it a method that provides correct estimates for the values of the fit parameters, but moreover it also yields a correct estimate of the precision of the fit parameters. It is shown experimentally that a properly aligned stable optical resonator can effectively yield monoexponential decays under multimode excitation. An on-line method has been developed, based on a statistical analysis of the noise properties of the decay transients, to align a stable resonator toward this monoexponential decay.

© 2001 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: January 5, 2001
Revised Manuscript: April 2, 2001
Published: August 20, 2001

Citation
Hans Naus, Ivo H. M. van Stokkum, Wim Hogervorst, and Wim Ubachs, "Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment," Appl. Opt. 40, 4416-4426 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-24-4416


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  2. A. Kastler, “Atomes à l’intérieur d’un interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962). [CrossRef]
  3. T. W. Hänsch, A. L. Schawlow, P. E. Toshek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum. Electron. 8, 802–804 (1972). [CrossRef]
  4. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Uenten, D. S. Urevig, D. J. Spencer, D. J. Bernard, “Sensitivity measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980). [CrossRef] [PubMed]
  5. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–52 (1997). [CrossRef] [PubMed]
  6. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998). [CrossRef]
  7. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ringdown spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996). [CrossRef]
  8. R. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  9. J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ringdown spectroscopy with Fourier-transform-limited pulses,” Chem. Phys. Lett. 258, 63–70 (1996). [CrossRef]
  10. J. Y. Lee, H.-W. Lee, J. W. Hahn, “Complex traversal time for optical pulse transmission in a Fabry–Perot cavity,” Jpn. J. Appl. Phys. 38, 6287–6297 (1999). [CrossRef]
  11. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ringdown spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995). [CrossRef]
  12. P. Zalicki, R. N. Zare, “Cavity ringdown spectroscopy for quantitative absorption experiments,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  13. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ringdown spectroscopy,” Appl. Opt. 35, 4112–4116 (1996). [CrossRef] [PubMed]
  14. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity-enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  15. B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  16. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity-ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000). [CrossRef]
  17. J. Ye, L.-S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics; demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  18. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, A. M. Wodtke, “Coherent cavity ringdown spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994). [CrossRef]
  19. J. L. Remo, “Reflection losses for symmetrically perturbed curved reflectors in open resonators,” Appl. Opt. 20, 2997–3002 (1981). [CrossRef] [PubMed]
  20. D. Romanini, K. K. Lehmann, “Ringdown-cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, and 8 stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  21. A. O’Keefe, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 293, 331–336 (1998). [CrossRef]
  22. A. O’Keefe, J. J. Scherer, J. B. Paul, “Integrated cavity output analysis of ultraweak absorption,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  23. Photomultiplier Tubes, (Catalog) (Hamamatsu Photonics, Shizuoka Prefecture, Japan, 1996).
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University, Cambridge, England, 1993).
  25. Y. Beers, Introduction to the Theory of Error (Addision-Wesley, Cambridge, Mass., 1957).
  26. D. M. Bates, D. G. Watts, Nonlinear Regression and its Applications (Wiley, New York, 1988). [CrossRef]
  27. R. J. Carroll, D. Ruppert, Transformation and Weighting in Regression (Chapman & Hall, New York, 1988). [CrossRef]
  28. I. H. M. van Stokkum, W. A. van der Graaf, D. Lenstra, “Weighted fit of optical spectra,” Opt. Commun. 121, 103–108 (1995). [CrossRef]
  29. Splus Reference Manual (Statistical Sciences, Seattle, Wash., 1991).
  30. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared cavity-ringdown spectroscopy laser-absorption spectroscopy (IR-CLAS),” Chem. Phys. Lett. 245, 273–280 (1995). [CrossRef]
  31. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ringdown cavity to arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996). [CrossRef]
  32. H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g- (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997). [CrossRef]
  33. M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser-desorption jet-cooling mass-spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995). [CrossRef]
  34. I. Labazan, S. Rustić, S. Milos̆ević, “Nonlinear effects in pulsed cavity-ringdown spectroscopy of lithium vapor,” Chem. Phys. Lett. 320, 613–622 (2000). [CrossRef]
  35. C. R. Bucher, K. K. Lehmann, D. F. Plusquellic, G. T. Fraser, “Doppler-free nonlinear absorption in ethylene by use of continuous-wave ringdown spectroscopy,” Appl. Opt. 39, 3154–3164 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited