OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4476–4486

Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings

Gia-Wei Chern, Lon A. Wang, and Chunn-Yenn Lin  »View Author Affiliations


Applied Optics, Vol. 40, Issue 25, pp. 4476-4486 (2001)
http://dx.doi.org/10.1364/AO.40.004476


View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transfer-matrix method is developed for modeling a corrugated long-period fiber grating. Cladding-mode resonance in such a corrugated structure can be controlled by the applied tensile stress based on the photoelastic effect. A first-order vectorial perturbation expansion is used to derive the mode fields of the two basic regions under the strain-induced index perturbation. Because the etched cladding radius is much smaller than the unetched radius, the effect of the corrugated structure on cladding modes cannot be treated as a small perturbation. Thus the conventional coupled-mode theory is inadequate for the modeling of such a structure. Based on a self-consistent mode-matching technique, mode coupling within the corrugated structure can be described by a set of transfer matrices. We apply the formulation to the calculation of the transmission spectra of a corrugated long-period grating and compare the calculated with the experimental results. The transfer-matrix approach is found to account well for the features of the transmission spectra of the corrugated long-period gratings.

© 2001 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2340) Fiber optics and optical communications : Fiber optics components

History
Original Manuscript: November 17, 2000
Published: September 1, 2001

Citation
Gia-Wei Chern, Lon A. Wang, and Chunn-Yenn Lin, "Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings," Appl. Opt. 40, 4476-4486 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-25-4476

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited