OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4557–4561

Fabrication of mid-infrared frequency-selective surfaces by soft lithography

Kateri E. Paul, Cheng Zhu, J. Christopher Love, and George M. Whitesides  »View Author Affiliations


Applied Optics, Vol. 40, Issue 25, pp. 4557-4561 (2001)
http://dx.doi.org/10.1364/AO.40.004557


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the fabrication of large areas (4 cm2) of metallic structures or aperture elements that have ∼100–350-nm linewidths and act as frequency-selective surfaces. These structures are fabricated with a type of soft lithography—near-field contact-mode photolithography—that uses a thin elastomeric mask having topography on its surface and is in conformal contact with a layer of photoresist. The mask acts as an optical element to create minima in the intensity of light delivered to the photoresist. Depending on the type of photoresist used, lines of, or trenches in, photoresist are formed on the substrate by exposure, development, and lift-off. These surfaces act as bandpass or bandgap filters in the infrared.

© 2001 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3060) Physical optics : Infrared
(350.2450) Other areas of optics : Filters, absorption

History
Original Manuscript: January 2, 2001
Revised Manuscript: June 12, 2001
Published: September 1, 2001

Citation
Kateri E. Paul, Cheng Zhu, J. Christopher Love, and George M. Whitesides, "Fabrication of mid-infrared frequency-selective surfaces by soft lithography," Appl. Opt. 40, 4557-4561 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-25-4557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  2. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14, 931–933 (1989). [CrossRef] [PubMed]
  3. C. M. Rhoades, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982). [CrossRef]
  4. I. Puscasu, D. Spencer, G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39, 1570–1574 (2000). [CrossRef]
  5. M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996). [CrossRef]
  6. K. J. Kogler, R. G. Pastor, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988). [CrossRef] [PubMed]
  7. Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998). [CrossRef]
  8. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999). [CrossRef]
  9. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997). [CrossRef]
  10. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998). [CrossRef]
  11. K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998). [CrossRef]
  12. J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998). [CrossRef]
  13. A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999). [CrossRef]
  14. J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001). [CrossRef]
  15. J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997). [CrossRef]
  16. J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998). [CrossRef]
  17. H. Schmid, B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33, 3042–3049 (2000). [CrossRef]
  18. Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited