OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4570–4587

Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. I. Design

Guy R. Bennett  »View Author Affiliations

Applied Optics, Vol. 40, Issue 25, pp. 4570-4587 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By use of a focusing configuration analogous to a Gregorian or a Cassegrain telescope, the on-axis aberration of a grazing-incidence spheric-based Kirkpatrick–Baez compound microscope may be precisely corrected. For finite fields, the off-axis performance degrades too rapidly for high-spatial-resolution imaging of even the smallest objects of interest. However, by use of ray-trace optimization it is possible to perturb the system such that the perfect, but impractical, on-axis performance is modestly degraded and uniformly distributed over a chosen object field. By use of this and other performance-enhancing features, two example ultrahigh-spatial-resolution laser-backlit x-ray microscope designs suitable for inertial confinement fusion (ICF) research have been developed. A companion paper [Appl. Opt. 40, 4588 (2001)] describing the tolerance analysis indicates that <0.5-µm spatial resolution at x-ray energies as high as 25 KeV is possible. As a prototype step, simpler noncompound devices are under consideration for Sandia National Laboratories’ Z accelerator/Z-Beamlet ICF facility.

© 2001 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.2740) Optical design and fabrication : Geometric optical design
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors

Original Manuscript: January 17, 2001
Revised Manuscript: April 30, 2001
Published: September 1, 2001

Guy R. Bennett, "Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. I. Design," Appl. Opt. 40, 4570-4587 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Bennett, J. A. Folta, “Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. II. Tolerance analysis,” Appl. Opt. 40, 4588–4607 (2001). [CrossRef]
  2. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995). [CrossRef]
  3. http://lasers.llnl.gov/inertial.html , Inertial Confinement Fusion Program, Lawrence Livermore National Laboratory, home page.
  4. http://www.lanl.gov/ICF/ , Inertial Confinement Fusion and Radiation Physics Program, Los Alamos National Laboratory, home page.
  5. http://www.llnl.gov/nif/index.html , National Ignition Facility, Lawrence Livermore National Laboratory, home page.
  6. http://www.llnl.gov , Lawrence Livermore National Laboratory, home page.
  7. J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. DaSilva, S. G. Glendenning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998). [CrossRef]
  8. J. A. Oertel, “Los Alamos pinhole camera (LAPC): a new flexible x-ray pinhole camera” Rev. Sci. Instrum. 68, 786–788 (1997). [CrossRef]
  9. C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J. Sethian, A. Mostovych, Y. Aglitskiy, T. Lehecka, G. Holland, “High-resolution x-ray imaging of planar foils irradiated by the Nike KrF laser,” Phys. Plasmas 4, 1397–1401 (1997). [CrossRef]
  10. C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997). [CrossRef]
  11. Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J. Sethian, C. M. Brown, J. Seely, U. Feldman, G. Holland, “The use of spherically bent crystals for the Nike laser plasmas spectral diagnostics and monochromatic imaging,” in Applications of X Rays Generated from Lasers and Other Bright Sources, G. A. Kyrala, J. C. J. Gauthier, eds., Proc. SPIE3157, 104–115 (1997). [CrossRef]
  12. Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J. Sethian, C. M. Brown, J. Seely, U. Feldman, G. Holland, “High resolution monochromatic x-ray imaging system based on spherically bent crystals,” Appl. Opt. 37, 5253–5261 (1998). [CrossRef]
  13. P. Kirkpatrick, A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948). [CrossRef] [PubMed]
  14. F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995). [CrossRef]
  15. F. J. Marshall, J. A. Delettrez, R. Epstein, B. Yaakobi, “Diagnosis of laser-target implosions by space-resolved continuum absorption x-ray spectroscopy,” Phys. Rev. E 49, 4381–4390 (1994). [CrossRef]
  16. F. J. Marshall, M. M. Allen, J. P. Knauer, J. A. Oertel, T. Archuleta, “A high-resolution x-ray microscope for laser-driven planar-foil experiments,” Phys. Plasmas 3, 1118–1124 (1998). [CrossRef]
  17. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996). [CrossRef] [PubMed]
  18. R. Kodama, H. Shiraga, M. Miyanaga, T. Matsushita, N. Nakai, H. Azechi, K. Mima, “Study of laser-imploded core plasmas with an advanced Kirkpatrick–Baez x-ray microscope,” Rev. Sci. Instrum. 68, 824–827 (1997). [CrossRef]
  19. R. Sauneuf, J. M. Dalmasso, T. Jalinaud, J. P. Le Breton, D. Schirmann, J. P. Marioge, F. Bridou, G. Tissot, J. Y. Clotaire, “Large-field high-resolution x-ray microscope for studying laser plasmas,” Rev. Sci. Instrum. 68, 3412–3420 (1997). [CrossRef]
  20. H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (N.Y.) 10, 94–114 (1952).
  21. H. Wolter, “Generalized Schwarzchild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (N.Y.) 10, 286–295 (1952).
  22. B. A. Remington, S. W. Hann, S. G. Glendinning, J. D. Kilkenny, D. H. Munro, R. J. Wallace, “Large growth Rayleigh–Taylor experiments using shaped laser pulses,” Phys. Rev. Lett. 67, 3259–3262 (1991). [CrossRef] [PubMed]
  23. R. J. Ellis, J. E. Trebes, D. W. Phillion, J. D. Kilkenny, S. G. Glendinning, J. D. Wielwald, R. A. Levesque, “Four-frame gated Wolter x-ray microscope,” Rev. Sci. Instrum. 61, 2759–2761 (1990). [CrossRef]
  24. R. Kodama, Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan (personal communication, October1997).
  25. D. C. Wilson, C. Adams, T. Asaki, G. R. Bennett, P. A. Bradley, S. Caldwell, N. D. Delamater, J. C. Fernandez, L. Foreman, S. R. Goldman, J. K. Hoffer, K. Klare, R. Margevicius, D. S. Montgomery, T. J. Murphy, L. Salazar, J. D. Sheliak, D. P. Smitherman, D. Thoma, J. Wallace, “Los Alamos progress toward achieving DT burn on the National Ignition Facility,” Fusion Technol. 34, 753–759 (1998).
  26. In this paper the details of how the laser-produced backlighter x rays are generated are not given, although it should be noted that direct laser irradiation of a metallic foil is a commonly used backlighting technique for multi-kiloelectron volt x-ray production.27–29 However, for ICF experiments that rely on self-emission it should be noted that in capsule implosion studies the central gaseous region is often doped with argon to enhance the core brightness. However, for the larger and more opaque NIF capsules, an emitter of higher energy K-shell radiation, for example, krypton, is required. For future backlighting applications that will require improved x-ray conversion efficiency at high photon energies it is notable that a new technique that uses laser-irradiated underdense radiators has been proposed by Suter et al. (Ref. 30 and references therein). Furthermore, a fluorescence-based illumination technique, pumped by underdense radiators or laser-hohlraum hot-corona radiation, has also been suggested.30 Interestingly, the same approach may also be useful for Sandia National Laboratories’ Z accelerator,31,32 for which fluorescence in germanium-doped ICF capsules, for example, could be pumped by the bremsstrahlung background.Although pinhole, curved crystal, and grazing incidence are the most commonly used ICF x-ray imaging techniques, it should be noted that laser-plasma point projection imaging (point source dental x-ray imaging with no actual pinhole or optic), can be a powerful but simple technique. Indeed, the new Z-Beamlet laser backlighter system33,34 at Sandia’s Z accelerator31,32 will be used extensively to point project image both ICF and high-energy density physics experiments. Furthermore, by use of a particularly small point source generated by a pulsed-power x pinch,35 this most simple of imaging techniques is also becoming important for other physics applications in which lower x-ray energies and less-precise timing are acceptable.36 Finally, although diffractive optics27 have been applied to the study of laser-produced plasmas with moderate resolution,37 their most productive use has been in areas unrelated to ICF, for example, x-ray synchrotron microprobes. However, with developments and improvements, diffractive-optic techniques may well become attractive for ICF experiments in the future.
  27. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge U. Press, Cambridge, 2000).
  28. O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logory, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility (invited),” Rev. Sci. Instrum. 72, 627–634 (2001). [CrossRef]
  29. J. Workman, G. A. Kyrala, “X-ray yield scaling studies performed on the OMEGA laser,” Rev. Sci. Instrum. 72, 678–681 (2001). [CrossRef]
  30. L. J. Suter, O. L. Landen, J. I. Koch, “Prospect for fluorescence based imaging/visualization of hydrodynamic systems on the National Ignition Facility,” Rev. Sci. Instrum. 70, 663–666 (1999). [CrossRef]
  31. R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, J. A. Torres, D. M. Zagar, T. L. Gilliland, D. O. Jobe, J. L. McKenney, R. C. Mock, M. Vargas, T. Wagoner, D. L. Peterson, “Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ,” Phys. Plasmas 5, 2105–2111 (1998). [CrossRef]
  32. http://zpinch.sandia.gov , Z accelerator, Sandia National Laboratories, home page.
  33. G. R. Bennett, O. L. Landen, R. G. Adams, J. L. Porter, L. E. Ruggles, W. W. Simpson, C. Wakefield, “X-ray imaging techniques on Z using the Z-Beamlet laser,” Rev. Sci. Instrum. 72, 657–662 (2001). [CrossRef]
  34. http://www.z-beamlet.sandia.gov , Z-Beamlet, Sandia National Laboratories, home page.
  35. T. A. Shelkovenko, S. A. Pikus, A. R. Mingaleev, D. A. Hammer, “Studies of plasmas formation from exploding wires and multiwire arrays using x-ray backlighting,” Rev. Sci. Instrum. 70, 667–670 (1999). [CrossRef]
  36. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, J. B. Greenly, Y. S. Dimant, J. A. Hammer, “Mulitphase foamlike structure of exploding wire cores,” Phys. Rev. Lett. 83, 4313–4316 (1999). [CrossRef]
  37. G. Cauchon, M. Pichet-Thomasset, R. Sauneuf, P. Dhez, M. Idir, M. Ollivier, P. Troussel, J.-Y. Boutin, J.-P. Le Breton, “Imaging of laser produced plasma at 1.43 keV using Fresnel zone plate and Bragg–Fresnel lens,” Rev. Sci. Instrum. 69, 3186–3193 (1998). [CrossRef]
  38. J. H. Underwood, “Multilayer mirrors for x-rays and the extreme UV,” Opt. News (March1986), pp. 20–25.
  39. A. V. Baez, X-ray Microscopy and Microradiography (Academic, New York, 1957), p. 186.
  40. J. Dyson, “Optics of the focusing x-ray microscope,” Proc. Phys. Soc. London Sec. B 65, 580–589 (1952). [CrossRef]
  41. H. H. Pattee, in X-Ray Microscopy and Microradiography (Academic, New York, 1957), p. 135.
  42. J. F. McGee, in X-Ray Microscopy and Microradiography (Academic, New York, 1957), p. 164.
  43. D. Gallagher, W. Cash, S. Jelsma, J. Farmer, “Sub-arcsec x-ray telescope for imaging the solar corona in the 0.25–1.2 keV band,” in Multilayer and Grazing Incidence X-Ray/EUV Optics III, R. B. Hoover, A. B. Walker, eds., Proc. SPIE2805, 121–132 (1996). [CrossRef]
  44. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  45. http://www.focus-software.com , Focus Software, Inc., home page.
  46. J. E. Harvey, P. L. Thompson, “Generalized Wolter type I design for the solar x-ray imager (SXI),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. Walker eds., Proc. SPIE3766, 173–183 (1999). [CrossRef]
  47. P. L. Thompson, J. E. Harvey, “Systems engineering analysis of aplantic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000). [CrossRef]
  48. http://www-cxro.lbl.gov/data_booklet/ , X-ray Data Booklet. Accessed from the Ernest Orlando Lawrence Berkeley National Laboratory home page.
  49. G. R. Bennett, J. M. Wallace, T. J. Murphy, R. E. Chrien, N. D. Delamater, P. L. Gobby, A. A. Hauer, K. A. Klare, J. A. Oertel, R. G. Watt, D. C. Wilson, W. S. Varnum, R. S. Craxton, V. Yu. Glebov, J. D. Schnittman, C. Stoeckl, S. M. Pollaine, R. E. Turner, “Moderate-convergence inertial confinement fusion implosions in tetrahedral hohlraums at Omega,” Phys. Plasmas 7, 2594–2603 (2000). [CrossRef]
  50. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  51. D. K. Bradley, P. M. Bell, O. L. Landen, J. D. Kilkenny, J. Oertel, “Development and characterization of a pair of 30–40 ps x-ray framing cameras,” Rev. Sci. Instrum. 66, 716–718 (1995). [CrossRef]
  52. http://www-cxro.lbl.gov/optical_constants/mirror2.html , thick layer reflectivity program. Accessed from the Ernest Orlando Lawrence Berkeley National Laboratory home page.
  53. http://www-cxro.lbl.gov/optical_constants/pert_form.html , x-ray properties of the elements program. Accessed from the Ernest Orlando Lawrence Berkeley National Laboratory home page.
  54. http://www-cxro.lbl.gov/optical_constants/multi2.html , multilayer reflectivity program. Accessed from the Ernest Orlando Lawrence Berkeley National Laboratory home page.
  55. E. Spiller, J. Wilczynski, D. Stearns, L. Golub, G. Nystrom, “Imaging performance of multilayer x-ray mirrors,” Appl. Phys. Lett. 61, 1481–1483 (1992). [CrossRef]
  56. E. Spiller, J. Wilczynski, D. Stearns, L. Golub, G. Nystrom, “Erratum: imaging performance of multilayer x-ray mirrors [Appl. Phys. Lett. 61, 1481 (1992)],” Appl. Phys. Lett. 61, 3195 (1992). [CrossRef]
  57. E. Spiller, D. Stearns, M. Krumrey, “Multilayer x-ray mirrors: interfacial roughness, scattering, and image quality,” J. Appl. Phys. 74, 107–118 (1993). [CrossRef]
  58. J. B. Kortright, “Nonspecular x-ray scattering from multilayer structures,” J. Appl. Phys. 70, 3620–3625 (1991). [CrossRef]
  59. J. H. Underwood, T. W. Barbee, “Layered synthetic microstructures as Bragg diffractors for x rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981). [CrossRef] [PubMed]
  60. J. H. Underwood, “High-energy x-ray microscopy with multilayer reflectors,” Rev. Sci. Instrum. 57, 2119–2123 (1986). [CrossRef]
  61. J. H. Underwood, T. W. Barbee, C. Frieber, “X-ray microscope with multilayer mirrors,” Appl. Opt. 25, 1730–1732 (1986). [CrossRef] [PubMed]
  62. A. S. Bakulin, S. M. Durbin, T. Jach, J. Pedulla, “Fast imaging of hard x rays with a laboratory microscope,” Appl. Opt. 39, 3333–3337 (2000). [CrossRef]
  63. J. F. Seely, M. P. Kowalski, W. R. Hunter, G. Gutman, “Reflectance of a wideband multilayer x-ray mirror at normal and grazing incidences,” Appl. Opt. 35, 4408–4412 (1996). [CrossRef] [PubMed]
  64. http://www.xraylith.wisc.edu/shadow/shadow.html/ , Shadow, home page. University of Wisconsin at Madison.
  65. C. Welnak, G. Chen, F. Cerrina, “Shadow: a synchrotron radiation and x-ray optics simulation tool,” Nucl. Instrum. Methods A 347, 344–347 (1994). [CrossRef]
  66. R. J. Knoll, P. E. Glen, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE362, 78–85 (1982). [CrossRef]
  67. T. T. Saha, D. B. Leviton, P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996), and references therein.
  68. http://www.breault.com , Breault Research Organization, Inc., home page.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited