OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4588–4607

Advanced laser-backlit Grazing-Incidence X-Ray Imaging Systems for Inertial Confinement Fusion Research. II. Tolerance Analysis

Guy R. Bennett and James A. Folta  »View Author Affiliations


Applied Optics, Vol. 40, Issue 25, pp. 4588-4607 (2001)
http://dx.doi.org/10.1364/AO.40.004588


View Full Text Article

Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two example ultrahigh-spatial-resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-μm spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible: Existing ICF imaging diagnostics approach ~2 μm spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolutions, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique.

© 2001 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(290.5880) Scattering : Scattering, rough surfaces
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors

Citation
Guy R. Bennett and James A. Folta, "Advanced laser-backlit Grazing-Incidence X-Ray Imaging Systems for Inertial Confinement Fusion Research. II. Tolerance Analysis," Appl. Opt. 40, 4588-4607 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-25-4588


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. R. Bennett, “Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. I. Design,” Appl. Opt. 40, 4570–4587 (2001).
  2. http://www.llnl.gov/nif/index.html, National Ignition Facility, Lawrence Livermore National Laboratory, home page.
  3. http://www.llnl.gov, Lawrence Livermore National Laboratory, home page.
  4. R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, J. A. Torres, D. M. Zagar, T. L. Gilliland, D. O. Jobe, J. L. McKenney, R. C. Mock, M. Vargas, T. Wagoner, and D. L. Peterson, “Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ,” Phys. Plasmas 5, 2105–2111 (1998).
  5. http://zpinch.sandia.gov, Z accelerator, Sandia National Laboratories, home page.
  6. G. R. Bennett, O. L. Landen, R. G. Adams, J. L. Porter, L. E. Ruggles, W. W. Simpson, and C. Wakefield, “X-ray imaging techniques on Z using the Z-Beamlet laser,” Rev. Sci. Instrum. 72, 657–662 (2001).
  7. http://www.z-beamlet.sandia.gov, Z-Beamlet, Sandia National Laboratories, home page.
  8. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).
  9. Research Electro-Optics, Inc., 1855 South 57th Court, Boulder, Colorado 80301.
  10. M. Lauer, Research Electro-Optics, Inc., 1855 South 57th Court, Boulder, Colorado 80301 (personal communications, 1997–2000).
  11. http://www.bauerinc.com, Bauer Associates, Inc., home page.
  12. P. Glenn, “Angstrom level profilometry for sub-millimeter to meter scale surface errors,” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, and G. M. Sanger, eds., Proc. SPIE 1333, 326–336 (1990).
  13. P. Glenn, “Robust, sub-angstrom level mid spatial frequency profilometry,” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, and G. M. Sanger, eds., Proc. SPIE 1333, 175–182 (1990).
  14. P. Glenn, “Robust, angstrom level circularity profilometry,” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, and G. M. Sanger, eds., Proc. SPIE 1333, 230–238 (1990).
  15. P. Glenn, “Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE 1531, 54–61 (1992).
  16. P. E. Glenn, Bauer Associates, Inc., Suite 30, 888 Worcester Street, Wellesley, Massachusetts 02482–3717 (personal communications, 1999–2000).
  17. J. A. Folta, S. Bajt, T. W. Barbee, Jr., R. F. Grabner, P. B. Mirkarimi, T. Nguyen, M. A. Schmidt, E. Spiller, C. C. Walton, M. Wedowski, and C. Montcalm, “Advances in multilayer reflective coatings for extreme-ultraviolet lithography,” in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE 3676, 702–709 (1999).
  18. C. Montcalm, E. Spiller, M. Wedowski, E. M. Gullikson, and J. A. Folta, “Multilayer coating of 10× projection optics for extreme-ultraviolet lithography,” in Emerging Lithographic Technologies III, Y. Vladimirsky, ed., Proc. SPIE 3676, 710–716 (1999).
  19. C. Montcalm, S. Bajt, P. B. Mirkarimi, E. Spiller, F. J. Weber, and J. A. Folta, “Multilayer reflective coatings for extreme-ultraviolet lithography,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE 3331, 42–51 (1998).
  20. E. Spiller, J. Wilczynski, D. Stearns, L. Golub, and G. Nystrom, “Imaging performance of multilayer x-ray mirrors,” Appl. Phys. Lett. 61, 1481–1483 (1992).
  21. E. Spiller, J. Wilczynski, D. Stearns, L. Golub, and G. Nystrom, “Erratum: imaging performance of multilayer x-ray mirrors [Appl. Phys. Lett. 61, 1481 (1992)],” Appl. Phys. Lett. 61, 3195 (1992).
  22. E. Spiller, D. Stearns, and M. Krumrey, “Multilayer x-ray mirrors: interfacial roughness, scattering, and image quality,” J. Appl. Phys. 74, 107–118 (1993).
  23. T. T. Saha, D. B. Leviton, and P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996).
  24. P. L. Thompson and J. E. Harvey, “Systems engineering analysis of aplantic Wolter type I x-ray telescope,” Opt. Eng. 36, 1677–1691 (2000).
  25. J. E. Harvey, K. L. Lewotsky, and A. Kotha, “Effects of surface scatter on the optical performance of x-ray synchrotron beam-line mirrors,” Appl. Opt. 34, 3024–3032 (1995).
  26. J. E. Harvey, E. C. Moran, and W. P. Zmek, “Transfer function characterization of grazing incidence optical systems,” Appl. Opt. 27, 1527–1533 (1988).
  27. J. E. Harvey, “Modeling the image quality of enhanced reflectance x-ray multilayers as a surface power spectral density function,” Appl. Opt. 34, 3715–3726 (1995).
  28. R. J. Knoll and P. Glenn, “Mirror surface autocovariance functions and their associated visible scattering,” Appl. Opt. 21, 1824–1838 (1982).
  29. A. Slomba, R. Babish, and P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE 597, 40–54 (1985).
  30. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).
  31. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  32. Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J. Sethian, C. M. Brown, J. Seely, U. Feldman, and G. Holland, “The use of spherically bent crystals for the Nike laser plasmas spectral diagnostics and monochromatic imaging,” in Applications of X Rays Generated from Lasers and Other Bright Sources, G. A. Kyrala and J. C. J. Gauthier, eds., Proc. SPIE 3157, 104–115 (1997).
  33. Y. Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J. Sethian, C. M. Brown, J. Seely, U. Feldman, and G. Holland, “High-resolution monochromatic x-ray imaging system based on spherically bent crystals,” Appl. Opt. 37, 5253–5261 (1998).
  34. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999).
  35. J. C. Stover, Optical Scattering, Measurement and Analysis (McGraw-Hill, New York, 1990).
  36. J. E. Harvey, “Light-scattering characteristics of optical surfaces,” Ph.D. dissertation (Optical Sciences Center, University of Arizona, Tucson, Ariz., 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited