Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Advanced laser-backlit grazing-incidence x-ray imaging systems for inertial confinement fusion research. II. Tolerance analysis

Not Accessible

Your library or personal account may give you access

Abstract

Two example ultrahigh-spatial-resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-µm spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible: Existing ICF imaging diagnostics approach ∼2 µm spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolutions, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas

Jeffrey A. Koch, Otto L. Landen, Laurence J. Suter, Laurent P. Masse, Daniel S. Clark, James S. Ross, Andrew J. Mackinnon, Nathan B. Meezan, Cliff A. Thomas, and Yuan Ping
Appl. Opt. 52(15) 3538-3556 (2013)

Electroformed grazing incidence x-ray mirrors for a mirror array telescope

Melville P. Ulmer, Yutaka Matsui, D. K. Bedford, G. M. Simnett, and Peter Z. Takacs
Appl. Opt. 26(18) 3852-3857 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved