OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4616–4621

Absorbance of opaque microstructures in optically diffuse media

Brian W. Pogue, Elizabeth A. White, Ulf L. Österberg, and Keith D. Paulsen  »View Author Affiliations

Applied Optics, Vol. 40, Issue 25, pp. 4616-4621 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study experimental measurements are used to determine that the observed absorbance of opaque microstructures in optically diffuse media correlates with the total surface area rather than the attenuation as calculated in a nonscattering environment. The data suggest that it may be possible to use remote measurements of optical diffuse transmission to quantify surface areas of microcapillaries that are highly absorbing or larger blood vessels that can have high intrinsic attenuation because of hematocrit alone. Results obtained in a transmission geometry are insensitive to the position of the microstructure along the line between source and detector, whereas those collected in a remission geometry are highly sensitive to the depth at which the structure is located. These types of measurement involving microscopic structures embedded in diffuse media have potential application in quantifying blood vessel surface areas that contain contrast agents or other microparticles within tissue.

© 2001 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media
(290.2200) Scattering : Extinction

Original Manuscript: November 28, 2000
Revised Manuscript: May 22, 2001
Published: September 1, 2001

Brian W. Pogue, Elizabeth A. White, Ulf L. Österberg, and Keith D. Paulsen, "Absorbance of opaque microstructures in optically diffuse media," Appl. Opt. 40, 4616-4621 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. F. Jobsis, “Non-invasive, infra-red monitoring of cerebral and myochardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977). [CrossRef]
  2. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988). [CrossRef] [PubMed]
  3. D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London Ser. B 352, 649–659 (1997). [CrossRef]
  4. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998). [CrossRef] [PubMed]
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  6. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997). [CrossRef]
  7. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001). [CrossRef] [PubMed]
  8. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  9. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822–824 (2001). [CrossRef]
  10. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  11. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000). [CrossRef]
  12. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995). [CrossRef] [PubMed]
  13. M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997). [CrossRef] [PubMed]
  14. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  15. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London Ser. B 352, 707–716 (1997). [CrossRef]
  16. A. Talsma, B. Chance, G. Reindert, “Corrections for inhomogeneities in biological tissue caused by blood vessels,” J. Opt. Soc. Am. A 18, 932–939 (2001). [CrossRef]
  17. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999). [CrossRef]
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipil-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  19. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  20. A. Krogh, “The number and distribution of capillaries in muscles with calculations of the oxygen pressurehead necessary for supplying the tissue,” J. Physiol. 52, 409–415 (1919). [PubMed]
  21. M. Suzuki, K. Hori, I. Abe, S. Saito, H. Sato, “Functional characterization of the microcirculation in tumors,” Cancer Metastasis Rev. 3, 115–126 (1984). [CrossRef] [PubMed]
  22. C. Lentner, ed., Geigy Scientific Tables: Physical Chemistry; Composition of Blood; Hematology; Somatometric Data (Ciba-Geigy Corporation, Education Division, West Caldwell, N.J., 1984), Vol. 3.
  23. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited