OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 25 — Sep. 1, 2001
  • pp: 4622–4632

Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration

Silvia Carraresi, Tahani S. Mohamed Shatir, Fabrizio Martelli, and Giovanni Zaccanti  »View Author Affiliations


Applied Optics, Vol. 40, Issue 25, pp. 4622-4632 (2001)
http://dx.doi.org/10.1364/AO.40.004622


View Full Text Article

Enhanced HTML    Acrobat PDF (1505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accuracy of the perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration has been investigated by comparisons with experimental and numerical results. Comparisons for scattering inhomogeneities showed that the model gives satisfactory results both for the intensity and for the temporal profile of the perturbation over a large range of values for the scattering properties of the defect. As for absorbing inhomogeneities, the model provides an excellent description for the temporal profile, but the results for the intensity are accurate only when the perturbation is small. For absorbing inhomogeneities an empirical model that has a significantly more extended application range has been proposed. The model is based on an expression for the time-resolved mean path length that detected photons have followed inside the inhomogeneity. The application range of the proposed model covers the values expected for the optical properties and for the volumes of inhomogeneities of practical interest for optical mammography.

© 2001 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: January 2, 2001
Revised Manuscript: May 8, 2001
Published: September 1, 2001

Citation
Silvia Carraresi, Tahani S. Mohamed Shatir, Fabrizio Martelli, and Giovanni Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-25-4622

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited